A new construction of the asymptotic algebra associated to the $q$-Schur algebra
HTML articles powered by AMS MathViewer
- by Olivier Brunat and Max Neunhöffer
- Represent. Theory 16 (2012), 88-107
- DOI: https://doi.org/10.1090/S1088-4165-2012-00383-1
- Published electronically: January 18, 2012
- PDF | Request permission
Abstract:
We denote by $A$ the ring of Laurent polynomials in the indeterminate $v$ and by $K$ its field of fractions. In this paper, we are interested in representation theory of the “generic” $q$-Schur algebra $\mathcal {S}_q(n,r)$ over $A$. We will associate to every symmetrising trace form $\tau$ on $K\mathcal {S}_q(n,r)$ a subalgebra $\mathcal {J}_{\tau }$ of $K\mathcal {S}_q(n,r)$ which is isomorphic to the “asymptotic” algebra $\mathcal {J}(n,r)_A$ defined by J. Du. As a consequence, we give a new hypothesis which implies James’ conjecture.References
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1990. With applications to finite groups and orders; Reprint of the 1981 original; A Wiley-Interscience Publication. MR 1038525
- Richard Dipper and Gordon James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 52 (1986), no. 1, 20–52. MR 812444, DOI 10.1112/plms/s3-52.1.20
- Richard Dipper and Gordon James, The $q$-Schur algebra, Proc. London Math. Soc. (3) 59 (1989), no. 1, 23–50. MR 997250, DOI 10.1112/plms/s3-59.1.23
- Richard Dipper and Gordon James, $q$-tensor space and $q$-Weyl modules, Trans. Amer. Math. Soc. 327 (1991), no. 1, 251–282. MR 1012527, DOI 10.1090/S0002-9947-1991-1012527-1
- Jie Du, Kazhdan-Lusztig bases and isomorphism theorems for $q$-Schur algebras, Kazhdan-Lusztig theory and related topics (Chicago, IL, 1989) Contemp. Math., vol. 139, Amer. Math. Soc., Providence, RI, 1992, pp. 121–140. MR 1197832, DOI 10.1090/conm/139/1197832
- Jie Du, Canonical bases for irreducible representations of quantum $\textrm {GL}_n$. II, J. London Math. Soc. (2) 51 (1995), no. 3, 461–470. MR 1332884, DOI 10.1112/jlms/51.3.461
- Jie Du, $q$-Schur algebras, asymptotic forms, and quantum $\textrm {SL}_n$, J. Algebra 177 (1995), no. 2, 385–408. MR 1355207, DOI 10.1006/jabr.1995.1304
- Jie Du, Cells in certain sets of matrices, Tohoku Math. J. (2) 48 (1996), no. 3, 417–427. MR 1404511, DOI 10.2748/tmj/1178225340
- Jie Du, Brian Parshall, and Leonard Scott, Quantum Weyl reciprocity and tilting modules, Comm. Math. Phys. 195 (1998), no. 2, 321–352. MR 1637785, DOI 10.1007/s002200050392
- Meinolf Geck, Representations of Hecke algebras at roots of unity, Astérisque 252 (1998), Exp. No. 836, 3, 33–55 (English, with French summary). Séminaire Bourbaki. Vol. 1997/98. MR 1685620
- Meinolf Geck, Kazhdan-Lusztig cells, $q$-Schur algebras and James’ conjecture, J. London Math. Soc. (2) 63 (2001), no. 2, 336–352. MR 1810133, DOI 10.1017/S0024610700001873
- Meinolf Geck and Götz Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR 1778802
- Gordon James, The decomposition matrices of $\textrm {GL}_n(q)$ for $n\le 10$, Proc. London Math. Soc. (3) 60 (1990), no. 2, 225–265. MR 1031453, DOI 10.1112/plms/s3-60.2.225
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- G. Lusztig, Hecke algebras with unequal parameters, CRM Monograph Series, vol. 18, American Mathematical Society, Providence, RI, 2003. MR 1974442, DOI 10.1090/crmm/018
- Max Neunhöffer, Kazhdan-Lusztig basis, Wedderburn decomposition, and Lusztig’s homomorphism for Iwahori-Hecke algebras, J. Algebra 303 (2006), no. 1, 430–446. MR 2253671, DOI 10.1016/j.jalgebra.2006.04.005
- Jian Yi Shi, The Kazhdan-Lusztig cells in certain affine Weyl groups, Lecture Notes in Mathematics, vol. 1179, Springer-Verlag, Berlin, 1986. MR 835214, DOI 10.1007/BFb0074968
- Michela Varagnolo and Eric Vasserot, On the decomposition matrices of the quantized Schur algebra, Duke Math. J. 100 (1999), no. 2, 267–297. MR 1722955, DOI 10.1215/S0012-7094-99-10010-X
Bibliographic Information
- Olivier Brunat
- Affiliation: Ruhr-Universität Bochum, Fakultät für Mathematik, D-44780 Bochum, Germany
- Address at time of publication: Institut de Mathèmatiques de Jussieu, UFR de Mathèmatiques, 175, rue du Chevaleret, F-75013 Paris
- Email: brunat@math.jussieu.fr
- Max Neunhöffer
- Affiliation: School of Mathematics and Statistics, Mathematical Institute, North Haugh, St Andrews, Fife KY16 9SS, Scotland, United Kingdom
- Email: neunhoef@mcs.st-and.ac.uk
- Received by editor(s): January 9, 2009
- Received by editor(s) in revised form: April 2, 2010
- Published electronically: January 18, 2012
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 16 (2012), 88-107
- MSC (2010): Primary 20C08, 20F55; Secondary 20G05
- DOI: https://doi.org/10.1090/S1088-4165-2012-00383-1
- MathSciNet review: 2869019