Irreducible Specht modules for Iwahori–Hecke algebras of type $B$
HTML articles powered by AMS MathViewer
- by Matthew Fayers
- Represent. Theory 16 (2012), 108-126
- DOI: https://doi.org/10.1090/S1088-4165-2012-00412-5
- Published electronically: February 6, 2012
- PDF | Request permission
Abstract:
We consider the problem of classifying irreducible Specht modules for the Iwahori–Hecke algebra of type $B$ with parameters $Q,q$. We solve this problem completely in the case where $q$ is not a root of unity, and in the case $q=-1$ we reduce the problem to the corresponding problem in type $A$.References
- Susumu Ariki, On the decomposition numbers of the Hecke algebra of $G(m,1,n)$, J. Math. Kyoto Univ. 36 (1996), no. 4, 789–808. MR 1443748, DOI 10.1215/kjm/1250518452
- Susumu Ariki, Proof of the modular branching rule for cyclotomic Hecke algebras, J. Algebra 306 (2006), no. 1, 290–300. MR 2271584, DOI 10.1016/j.jalgebra.2006.04.033
- Susumu Ariki and Andrew Mathas, The number of simple modules of the Hecke algebras of type $G(r,1,n)$, Math. Z. 233 (2000), no. 3, 601–623. MR 1750939, DOI 10.1007/s002090050489
- Susumu Ariki and Andrew Mathas, The representation type of Hecke algebras of type $B$, Adv. Math. 181 (2004), no. 1, 134–159. MR 2020657, DOI 10.1016/S0001-8708(03)00047-1
- Susumu Ariki, Victor Kreiman, and Shunsuke Tsuchioka, On the tensor product of two basic representations of $U_v(\widehat {\mathfrak {sl}}_e)$, Adv. Math. 218 (2008), no. 1, 28–86. MR 2409408, DOI 10.1016/j.aim.2007.11.018
- Jonathan Brundan, Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra $\mathfrak {g}\mathfrak {l}(m|n)$, J. Amer. Math. Soc. 16 (2003), no. 1, 185–231. MR 1937204, DOI 10.1090/S0894-0347-02-00408-3
- Jonathan Brundan and Alexander Kleshchev, Representations of shifted Yangians and finite $W$-algebras, Mem. Amer. Math. Soc. 196 (2008), no. 918, viii+107. MR 2456464, DOI 10.1090/memo/0918
- Jonathan Brundan and Alexander Kleshchev, Graded decomposition numbers for cyclotomic Hecke algebras, Adv. Math. 222 (2009), no. 6, 1883–1942. MR 2562768, DOI 10.1016/j.aim.2009.06.018
- J. Brundan & C. Stroppel, ‘Highest weight categories arising from Khovanov’s diagram algebra I: cellularity’, Mosc. Math. J., to appear.
- Jonathan Brundan and Catharina Stroppel, Highest weight categories arising from Khovanov’s diagram algebra III: category $\scr O$, Represent. Theory 15 (2011), 170–243. MR 2781018, DOI 10.1090/S1088-4165-2011-00389-7
- Richard Dipper and Gordon James, Representations of Hecke algebras of type $B_n$, J. Algebra 146 (1992), no. 2, 454–481. MR 1152915, DOI 10.1016/0021-8693(92)90078-Z
- Richard Dipper, Gordon James, and Eugene Murphy, Hecke algebras of type $B_n$ at roots of unity, Proc. London Math. Soc. (3) 70 (1995), no. 3, 505–528. MR 1317512, DOI 10.1112/plms/s3-70.3.505
- Richard Dipper and Andrew Mathas, Morita equivalences of Ariki-Koike algebras, Math. Z. 240 (2002), no. 3, 579–610. MR 1924022, DOI 10.1007/s002090100371
- Matthew Fayers, Reducible Specht modules, J. Algebra 280 (2004), no. 2, 500–504. MR 2089249, DOI 10.1016/j.jalgebra.2003.09.053
- Matthew Fayers, Irreducible Specht modules for Hecke algebras of type $\textbf {A}$, Adv. Math. 193 (2005), no. 2, 438–452. MR 2137291, DOI 10.1016/j.aim.2004.06.001
- Matthew Fayers, Weights of multipartitions and representations of Ariki-Koike algebras, Adv. Math. 206 (2006), no. 1, 112–144. MR 2261752, DOI 10.1016/j.aim.2005.07.017
- Matthew Fayers, Weights of multipartitions and representations of Ariki-Koike algebras. II. Canonical bases, J. Algebra 319 (2008), no. 7, 2963–2978. MR 2397417, DOI 10.1016/j.jalgebra.2007.10.002
- Matthew Fayers, On the irreducible Specht modules for Iwahori-Hecke algebras of type A with $q=-1$, J. Algebra 323 (2010), no. 6, 1839–1844. MR 2588144, DOI 10.1016/j.jalgebra.2010.01.009
- Matthew Fayers and Sinéad Lyle, Some reducible Specht modules for Iwahori-Hecke algebras of type $A$ with $q=-1$, J. Algebra 321 (2009), no. 3, 912–933. MR 2488560, DOI 10.1016/j.jalgebra.2008.11.006
- M. Fayers & S. Lyle, ‘The reducible Specht modules for the Hecke algebra $\mathcal {H}_{\mathbb {C},-1}(\mathcal {S}_n)$’, submitted.
- Meinolf Geck, Representations of Hecke algebras at roots of unity, Astérisque 252 (1998), Exp. No. 836, 3, 33–55 (English, with French summary). Séminaire Bourbaki. Vol. 1997/98. MR 1685620
- J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), no. 1, 1–34. MR 1376244, DOI 10.1007/BF01232365
- I. Grojnowski, ‘Affine $\hat {sl}_p$ controls the modular representation theory of the symmetric group and related Hecke algebras’, arXiv:math.RT/9907129.
- I. Grojnowski and M. Vazirani, Strong multiplicity one theorems for affine Hecke algebras of type A, Transform. Groups 6 (2001), no. 2, 143–155. MR 1835669, DOI 10.1007/BF01597133
- Gordon James, Sinéad Lyle, and Andrew Mathas, Rouquier blocks, Math. Z. 252 (2006), no. 3, 511–531. MR 2207757, DOI 10.1007/s00209-005-0863-0
- Gordon James and Andrew Mathas, A $q$-analogue of the Jantzen-Schaper theorem, Proc. London Math. Soc. (3) 74 (1997), no. 2, 241–274. MR 1425323, DOI 10.1112/S0024611597000099
- Gordon James and Andrew Mathas, The irreducible Specht modules in characteristic $2$, Bull. London Math. Soc. 31 (1999), no. 4, 457–462. MR 1687552, DOI 10.1112/S0024609399005822
- Gordon James and Andrew Mathas, The Jantzen sum formula for cyclotomic $q$-Schur algebras, Trans. Amer. Math. Soc. 352 (2000), no. 11, 5381–5404. MR 1665333, DOI 10.1090/S0002-9947-00-02492-2
- Bernard Leclerc and Hyohe Miyachi, Constructible characters and canonical bases, J. Algebra 277 (2004), no. 1, 298–317. MR 2059632, DOI 10.1016/j.jalgebra.2004.02.023
- Bernard Leclerc and Andrei Zelevinsky, Quasicommuting families of quantum Plücker coordinates, Kirillov’s seminar on representation theory, Amer. Math. Soc. Transl. Ser. 2, vol. 181, Amer. Math. Soc., Providence, RI, 1998, pp. 85–108. MR 1618743, DOI 10.1090/trans2/181/03
- Sinéad Lyle, Some reducible Specht modules, J. Algebra 269 (2003), no. 2, 536–543. MR 2015852, DOI 10.1016/S0021-8693(03)00537-4
- Sinéad Lyle, Some $q$-analogues of the Carter-Payne theorem, J. Reine Angew. Math. 608 (2007), 93–121. MR 2339470, DOI 10.1515/CRELLE.2007.054
- Sinéad Lyle and Andrew Mathas, Blocks of cyclotomic Hecke algebras, Adv. Math. 216 (2007), no. 2, 854–878. MR 2351381, DOI 10.1016/j.aim.2007.06.008
- Andrew Mathas, Simple modules of Ariki-Koike algebras, Group representations: cohomology, group actions and topology (Seattle, WA, 1996) Proc. Sympos. Pure Math., vol. 63, Amer. Math. Soc., Providence, RI, 1998, pp. 383–396. MR 1603195, DOI 10.1090/pspum/063/1603195
- Andrew Mathas, Iwahori-Hecke algebras and Schur algebras of the symmetric group, University Lecture Series, vol. 15, American Mathematical Society, Providence, RI, 1999. MR 1711316, DOI 10.1090/ulect/015
- Andrew Mathas, Tilting modules for cyclotomic Schur algebras, J. Reine Angew. Math. 562 (2003), 137–169. MR 2011334, DOI 10.1515/crll.2003.071
- Andrew Mathas, A Specht filtration of an induced Specht module, J. Algebra 322 (2009), no. 3, 893–902. MR 2531227, DOI 10.1016/j.jalgebra.2009.03.014
Bibliographic Information
- Matthew Fayers
- Affiliation: Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
- Email: m.fayers@qmul.ac.uk
- Received by editor(s): February 21, 2011
- Published electronically: February 6, 2012
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 16 (2012), 108-126
- MSC (2010): Primary 20C08, 05E10
- DOI: https://doi.org/10.1090/S1088-4165-2012-00412-5
- MathSciNet review: 2888172