From conjugacy classes in the Weyl group to unipotent classes, II
HTML articles powered by AMS MathViewer
- by G. Lusztig
- Represent. Theory 16 (2012), 189-211
- DOI: https://doi.org/10.1090/S1088-4165-2012-00411-3
- Published electronically: April 3, 2012
- PDF | Request permission
Abstract:
Let $G$ be a connected reductive group over an algebraically closed field of characteristic $p$. In an earlier paper we defined a surjective map $\Phi _{p}$ from the set $\underline {W}$ of conjugacy classes in the Weyl group $W$ to the set of unipotent classes in $G$. Here we prove three results for $\Phi _{p}$. First we show that $\Phi _{p}$ has a canonical one-sided inverse. Next we show that $\Phi _{0}=r\Phi _{p}$ for a unique map $r$. Finally, we construct a natural surjective map from $\underline {W}$ to the set of special representations of $W$ which is the composition of $\Phi _{0}$ with another natural map and we show that this map depends only on the Coxeter group structure of $W$.References
- R. W. Carter, Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1–59. MR 318337
- G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), no. 2, 205–272. MR 732546, DOI 10.1007/BF01388564
- D. Kazhdan and G. Lusztig, Fixed point varieties on affine flag manifolds, Israel J. Math. 62 (1988), no. 2, 129–168. MR 947819, DOI 10.1007/BF02787119
- G. Lusztig, A class of irreducible representations of a Weyl group, Nederl. Akad. Wetensch. Indag. Math. 41 (1979), no. 3, 323–335. MR 546372, DOI 10.1016/1385-7258(79)90036-2
- G. Lusztig, Notes on unipotent classes, Asian J. Math. 1 (1997), no. 1, 194–207. MR 1480994, DOI 10.4310/AJM.1997.v1.n1.a7
- G. Lusztig, Unipotent elements in small characteristic, Transform. Groups 10 (2005), no. 3-4, 449–487. MR 2183120, DOI 10.1007/s00031-005-0405-1
- G. Lusztig, Unipotent elements in small characteristic. II, Transform. Groups 13 (2008), no. 3-4, 773–797. MR 2452615, DOI 10.1007/s00031-008-9021-1
- G. Lusztig, Unipotent elements in small characteristic, III, J. Algebra 329 (2011), 163–189. MR 2769321, DOI 10.1016/j.jalgebra.2009.12.008
- George Lusztig, On some partitions of a flag manifold, Asian J. Math. 15 (2011), no. 1, 1–8. MR 2786462, DOI 10.4310/AJM.2011.v15.n1.a1
- G. Lusztig, From conjugacy classes in the Weyl group to unipotent classes, Represent. Theory 15 (2011), 494–530. MR 2833465, DOI 10.1090/S1088-4165-2011-00396-4
- G. Lusztig, On $C$-small conjugacy classes in a reductive group, Transform. Groups 16 (2011), no. 3, 807–825. MR 2827045, DOI 10.1007/s00031-011-9145-6
- Nicolas Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, Berlin-New York, 1982 (French). MR 672610, DOI 10.1007/BFb0096302
- N. Spaltenstein, On the generalized Springer correspondence for exceptional groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 317–338. MR 803340, DOI 10.2969/aspm/00610317
- N. Spaltenstein, Polynomials over local fields, nilpotent orbits and conjugacy classes in Weyl groups, Astérisque 168 (1988), 10–11, 191–217. Orbites unipotentes et représentations, I. MR 1021497
- T. Xue, On unipotent and nilpotent pieces, arxiv:0912.3820.
Bibliographic Information
- G. Lusztig
- Affiliation: Department of Mathematics, M.I.T., Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Received by editor(s): May 4, 2011
- Received by editor(s) in revised form: July 19, 2011
- Published electronically: April 3, 2012
- Additional Notes: Supported in part by the National Science Foundation
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 16 (2012), 189-211
- MSC (2010): Primary 20G99
- DOI: https://doi.org/10.1090/S1088-4165-2012-00411-3
- MathSciNet review: 2904567