Graded decomposition matrices of $v$-Schur algebras via Jantzen filtration
HTML articles powered by AMS MathViewer
- by Peng Shan
- Represent. Theory 16 (2012), 212-269
- DOI: https://doi.org/10.1090/S1088-4165-2012-00416-2
- Published electronically: April 30, 2012
- PDF | Request permission
Abstract:
We prove that certain parabolic Kazhdan-Lusztig polynomials calculate the graded decomposition matrices of $v$-Schur algebras given by the Jantzen filtration of Weyl modules, confirming a conjecture of Leclerc and Thibon.References
- Henning Haahr Andersen, The strong linkage principle for quantum groups at roots of 1, J. Algebra 260 (2003), no. 1, 2–15. Special issue celebrating the 80th birthday of Robert Steinberg. MR 1973573, DOI 10.1016/S0021-8693(02)00618-X
- S. Ariki, Graded $q$-Schur algebras, arxiv: 0903.3453
- A. A. Beĭlinson, How to glue perverse sheaves, $K$-theory, arithmetic and geometry (Moscow, 1984–1986) Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 42–51. MR 923134, DOI 10.1007/BFb0078366
- A. Beĭlinson and J. Bernstein, A proof of Jantzen conjectures, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 1–50. MR 1237825
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- A. Beilinson, V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigensheaves, available at http://www.math.harvard.edu/~gaitsgde/grad_2009.
- Alexander Beilinson and Victor Ginzburg, Wall-crossing functors and $\scr D$-modules, Represent. Theory 3 (1999), 1–31. MR 1659527, DOI 10.1090/S1088-4165-99-00063-1
- Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473–527. MR 1322847, DOI 10.1090/S0894-0347-96-00192-0
- Edward T. Cline, Brian J. Parshall, and Leonard L. Scott, Duality in highest weight categories, Classical groups and related topics (Beijing, 1987) Contemp. Math., vol. 82, Amer. Math. Soc., Providence, RI, 1989, pp. 7–22. MR 982273, DOI 10.1090/conm/082/982273
- S. Donkin, The $q$-Schur algebra, London Mathematical Society Lecture Note Series, vol. 253, Cambridge University Press, Cambridge, 1998. MR 1707336, DOI 10.1017/CBO9780511600708
- Vinay V. Deodhar, Ofer Gabber, and Victor Kac, Structure of some categories of representations of infinite-dimensional Lie algebras, Adv. in Math. 45 (1982), no. 1, 92–116. MR 663417, DOI 10.1016/S0001-8708(82)80014-5
- Peter Fiebig, Centers and translation functors for the category $\scr O$ over Kac-Moody algebras, Math. Z. 243 (2003), no. 4, 689–717. MR 1974579, DOI 10.1007/s00209-002-0462-2
- Edward Frenkel and Dennis Gaitsgory, $D$-modules on the affine Grassmannian and representations of affine Kac-Moody algebras, Duke Math. J. 125 (2004), no. 2, 279–327. MR 2096675, DOI 10.1215/S0012-7094-04-12524-2
- Victor Ginzburg, Nicolas Guay, Eric Opdam, and Raphaël Rouquier, On the category $\scr O$ for rational Cherednik algebras, Invent. Math. 154 (2003), no. 3, 617–651. MR 2018786, DOI 10.1007/s00222-003-0313-8
- Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki, $D$-modules, perverse sheaves, and representation theory, Progress in Mathematics, vol. 236, Birkhäuser Boston, Inc., Boston, MA, 2008. Translated from the 1995 Japanese edition by Takeuchi. MR 2357361, DOI 10.1007/978-0-8176-4523-6
- Jens Carsten Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics, vol. 750, Springer, Berlin, 1979 (German). MR 552943, DOI 10.1007/BFb0069521
- Gordon James and Andrew Mathas, A $q$-analogue of the Jantzen-Schaper theorem, Proc. London Math. Soc. (3) 74 (1997), no. 2, 241–274. MR 1425323, DOI 10.1112/S0024611597000099
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Mikhail Kapranov and Eric Vasserot, Vertex algebras and the formal loop space, Publ. Math. Inst. Hautes Études Sci. 100 (2004), 209–269. MR 2102701, DOI 10.1007/s10240-004-0023-9
- M. Kashiwara, The flag manifold of Kac-Moody Lie algebra, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 161–190. MR 1463702
- Masaki Kashiwara, Equivariant derived category and representation of real semisimple Lie groups, Representation theory and complex analysis, Lecture Notes in Math., vol. 1931, Springer, Berlin, 2008, pp. 137–234. MR 2409699, DOI 10.1007/978-3-540-76892-0_{3}
- Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1994. With a chapter in French by Christian Houzel; Corrected reprint of the 1990 original. MR 1299726
- Masaki Kashiwara and Toshiyuki Tanisaki, Kazhdan-Lusztig conjecture for affine Lie algebras with negative level, Duke Math. J. 77 (1995), no. 1, 21–62. MR 1317626, DOI 10.1215/S0012-7094-95-07702-3
- Masaki Kashiwara and Toshiyuki Tanisaki, Parabolic Kazhdan-Lusztig polynomials and Schubert varieties, J. Algebra 249 (2002), no. 2, 306–325. MR 1901161, DOI 10.1006/jabr.2000.8690
- David Kazhdan and George Lusztig, Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 185–203. MR 573434
- D. Kazhdan, G. Lusztig, Tensor structures arising from affine Lie algebras I-IV, J. Amer. Math. Soc., 6-7 (1993-1994), 905-947, 949-1011, 335-381, 383-453.
- Shrawan Kumar, Toward proof of Lusztig’s conjecture concerning negative level representations of affine Lie algebras, J. Algebra 164 (1994), no. 2, 515–527. MR 1271251, DOI 10.1006/jabr.1994.1073
- Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1923198, DOI 10.1007/978-1-4612-0105-2
- Bernard Leclerc, Decomposition numbers and canonical bases, Algebr. Represent. Theory 3 (2000), no. 3, 277–287. MR 1783802, DOI 10.1023/A:1009984201999
- Bernard Leclerc and Jean-Yves Thibon, Canonical bases of $q$-deformed Fock spaces, Internat. Math. Res. Notices 9 (1996), 447–456. MR 1399410, DOI 10.1155/S1073792896000293
- Bernard Leclerc and Jean-Yves Thibon, Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials, Combinatorial methods in representation theory (Kyoto, 1998) Adv. Stud. Pure Math., vol. 28, Kinokuniya, Tokyo, 2000, pp. 155–220. MR 1864481, DOI 10.2969/aspm/02810155
- D. Milicic, Localization and Representation Theory of Reductive Lie Groups, available at http://www.math.utah.edu/˜milicic
- B. Parshall, L. Scott, Integral and graded quasi-hereditary algebras, II. with applications to representations of generalized $q$-Schur algebras and algebraic groups, arxiv:0910.0633.
- Arun Ram and Peter Tingley, Universal Verma modules and the Misra-Miwa Fock space, Int. J. Math. Math. Sci. , posted on (2010), Art. ID 326247, 19. MR 2753641, DOI 10.1155/2010/326247
- Raphaël Rouquier, $q$-Schur algebras and complex reflection groups, Mosc. Math. J. 8 (2008), no. 1, 119–158, 184 (English, with English and Russian summaries). MR 2422270, DOI 10.17323/1609-4514-2008-8-1-119-158
- Alvany Rocha-Caridi and Nolan R. Wallach, Projective modules over graded Lie algebras. I, Math. Z. 180 (1982), no. 2, 151–177. MR 661694, DOI 10.1007/BF01318901
- Morihiko Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221–333. MR 1047415, DOI 10.2977/prims/1195171082
- Wolfgang Soergel, Character formulas for tilting modules over Kac-Moody algebras, Represent. Theory 2 (1998), 432–448. MR 1663141, DOI 10.1090/S1088-4165-98-00057-0
- Catharina Stroppel, Parabolic category $\scr O$, perverse sheaves on Grassmannians, Springer fibres and Khovanov homology, Compos. Math. 145 (2009), no. 4, 954–992. MR 2521250, DOI 10.1112/S0010437X09004035
- Takeshi Suzuki, Double affine Hecke algebras, conformal coinvariants and Kostka polynomials, C. R. Math. Acad. Sci. Paris 343 (2006), no. 6, 383–386 (English, with English and French summaries). MR 2259877, DOI 10.1016/j.crma.2006.08.009
- R. W. Thomason and Thomas Trobaugh, Higher algebraic $K$-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247–435. MR 1106918, DOI 10.1007/978-0-8176-4576-2_{1}0
- Michela Varagnolo and Eric Vasserot, On the decomposition matrices of the quantized Schur algebra, Duke Math. J. 100 (1999), no. 2, 267–297. MR 1722955, DOI 10.1215/S0012-7094-99-10010-X
- M. Varagnolo and E. Vasserot, Cyclotomic double affine Hecke algebras and affine parabolic category $\scr O$, Adv. Math. 225 (2010), no. 3, 1523–1588. MR 2673739, DOI 10.1016/j.aim.2010.03.028
Bibliographic Information
- Peng Shan
- Affiliation: Département de Mathématiques, Université Paris 7, 175 rue du Chevaleret, F-75013 Paris, France
- Email: shan@math.jussieu.fr
- Received by editor(s): March 27, 2011
- Published electronically: April 30, 2012
- © Copyright 2012 American Mathematical Society
- Journal: Represent. Theory 16 (2012), 212-269
- MSC (2010): Primary 20G43
- DOI: https://doi.org/10.1090/S1088-4165-2012-00416-2
- MathSciNet review: 2915315