## Distinguished tame supercuspidal representations and odd orthogonal periods

HTML articles powered by AMS MathViewer

- by Jeffrey Hakim and Joshua Lansky PDF
- Represent. Theory
**16**(2012), 276-316 Request permission

## Abstract:

We further develop and simplify the general theory of distinguished tame supercuspidal representations of reductive $p$-adic groups due to Hakim and Murnaghan, as well as the analogous theory for finite reductive groups due to Lusztig. We apply our results to study the representations of $\mathrm {GL}_n(F)$, with $n$ odd and $F$ a nonarchimedean local field, that are distinguished with respect to an orthogonal group in $n$ variables. In particular, we determine precisely when a supercuspidal representation is distinguished with respect to an orthogonal group and, if so, that the space of distinguishing linear forms has dimension one.## References

- Jeffrey D. Adler and Stephen DeBacker,
*Murnaghan-Kirillov theory for supercuspidal representations of tame general linear groups*, J. Reine Angew. Math.**575**(2004), 1–35. MR**2097545**, DOI 10.1515/crll.2004.080 - Stephen DeBacker,
*Parameterizing conjugacy classes of maximal unramified tori via Bruhat-Tits theory*, Michigan Math. J.**54**(2006), no. 1, 157–178. MR**2214792**, DOI 10.1307/mmj/1144437442 - P. Deligne and G. Lusztig,
*Representations of reductive groups over finite fields*, Ann. of Math. (2)**103**(1976), no. 1, 103–161. MR**393266**, DOI 10.2307/1971021 - Yuval Z. Flicker and David A. Kazhdan,
*Metaplectic correspondence*, Inst. Hautes Études Sci. Publ. Math.**64**(1986), 53–110. MR**876160**, DOI 10.1007/BF02699192 - J. Hakim, “Tame supercuspidal representations of $\mathrm {GL}_n$ distinguished by orthogonal involutions”, preprint.
- Jeffrey Hakim and Zhengyu Mao,
*Cuspidal representations associated to $(\textrm {GL}(n),\textrm {O}(n))$ over finite fields and $p$-adic fields*, J. Algebra**213**(1999), no. 1, 129–143. MR**1674664**, DOI 10.1006/jabr.1998.7664 - Jeffrey Hakim and Fiona Murnaghan,
*Distinguished tame supercuspidal representations*, Int. Math. Res. Pap. IMRP**2**(2008), Art. ID rpn005, 166. MR**2431732** - Roger E. Howe,
*Tamely ramified supercuspidal representations of $\textrm {Gl}_{n}$*, Pacific J. Math.**73**(1977), no. 2, 437–460. MR**492087**, DOI 10.2140/pjm.1977.73.437 - James E. Humphreys,
*Linear algebraic groups*, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR**0396773**, DOI 10.1007/978-1-4684-9443-3 - Kenneth Ireland and Michael Rosen,
*A classical introduction to modern number theory*, 2nd ed., Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990. MR**1070716**, DOI 10.1007/978-1-4757-2103-4 - Nathan Jacobson,
*Basic algebra. I*, 2nd ed., W. H. Freeman and Company, New York, 1985. MR**780184** - Hervé Jacquet,
*Représentations distinguées pour le groupe orthogonal*, C. R. Acad. Sci. Paris Sér. I Math.**312**(1991), no. 13, 957–961 (French, with English summary). MR**1113084** - T. Y. Lam,
*Introduction to quadratic forms over fields*, Graduate Studies in Mathematics, vol. 67, American Mathematical Society, Providence, RI, 2005. MR**2104929**, DOI 10.1090/gsm/067 - Serge Lang,
*Algebraic number theory*, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1970. MR**0282947** - George Lusztig,
*Symmetric spaces over a finite field*, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 57–81. MR**1106911**, DOI 10.1007/978-0-8176-4576-2_{3} - Zhengyu Mao,
*A fundamental lemma for metaplectic correspondence*, J. Reine Angew. Math.**496**(1998), 107–129. MR**1605813**, DOI 10.1515/crll.1998.024 - Allen Moy and Gopal Prasad,
*Unrefined minimal $K$-types for $p$-adic groups*, Invent. Math.**116**(1994), no. 1-3, 393–408. MR**1253198**, DOI 10.1007/BF01231566 - Fiona Murnaghan,
*Parametrization of tame supercuspidal representations*, On certain $L$-functions, Clay Math. Proc., vol. 13, Amer. Math. Soc., Providence, RI, 2011, pp. 439–469. MR**2767524** - Fiona Murnaghan,
*Regularity and distinction of supercuspidal representations*, Harmonic analysis on reductive, $p$-adic groups, Contemp. Math., vol. 543, Amer. Math. Soc., Providence, RI, 2011, pp. 155–183. MR**2798427**, DOI 10.1090/conm/543/10734 - O. Timothy O’Meara,
*Introduction to quadratic forms*, Classics in Mathematics, Springer-Verlag, Berlin, 2000. Reprint of the 1973 edition. MR**1754311** - Omer Offen,
*Kloosterman-Fourier inversion for symmetric matrices*, Bull. Soc. Math. France**133**(2005), no. 3, 331–348 (English, with English and French summaries). MR**2169821**, DOI 10.24033/bsmf.2489 - Vladimir Platonov and Andrei Rapinchuk,
*Algebraic groups and number theory*, Pure and Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen. MR**1278263** - C. Valverde, “On induced representations distinguished by orthogonal groups”, preprint.
- J.-L. Waldspurger,
*Correspondance de Shimura*, J. Math. Pures Appl. (9)**59**(1980), no. 1, 1–132 (French). MR**577010** - J.-L. Waldspurger,
*Sur les coefficients de Fourier des formes modulaires de poids demi-entier*, J. Math. Pures Appl. (9)**60**(1981), no. 4, 375–484 (French). MR**646366** - Jiu-Kang Yu,
*Construction of tame supercuspidal representations*, J. Amer. Math. Soc.**14**(2001), no. 3, 579–622. MR**1824988**, DOI 10.1090/S0894-0347-01-00363-0

## Additional Information

**Jeffrey Hakim**- Affiliation: Department of Mathematics and Statistics, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016
- MR Author ID: 272088
- Email: jhakim@american.edu
**Joshua Lansky**- Affiliation: Department of Mathematics and Statistics, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016
- Email: lansky@american.edu
- Received by editor(s): March 7, 2011
- Received by editor(s) in revised form: November 23, 2011
- Published electronically: June 1, 2012
- Additional Notes: Both authors were supported by NSF grant DMS-0854844.
- © Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory
**16**(2012), 276-316 - MSC (2010): Primary 22E50, 11F70; Secondary 11F67, 11E08, 11E81
- DOI: https://doi.org/10.1090/S1088-4165-2012-00418-6
- MathSciNet review: 2925798