## From conjugacy classes in the Weyl group to unipotent classes, III

HTML articles powered by AMS MathViewer

- by G. Lusztig
- Represent. Theory
**16**(2012), 450-488 - DOI: https://doi.org/10.1090/S1088-4165-2012-00422-8
- Published electronically: September 7, 2012
- PDF | Request permission

## Abstract:

Let $G$ be an affine algebraic group over an algebraically closed field whose identity component $G^{0}$ is reductive. Let $W$ be the Weyl group of $G$ and let $D$ be a connected component of $G$ whose image in $G/G^{0}$ is unipotent. In this paper we define a map from the set of “twisted conjugacy classes” in $W$ to the set of unipotent $G^{0}$-conjugacy classes in $D$ generalizing an earlier construction which applied when $G$ is connected.## References

- R. W. Carter,
*Conjugacy classes in the Weyl group*, Compositio Math.**25**(1972), 1–59. MR**318337** - P. Deligne and G. Lusztig,
*Representations of reductive groups over finite fields*, Ann. of Math. (2)**103**(1976), no. 1, 103–161. MR**393266**, DOI 10.2307/1971021 - Meinolf Geck and Götz Pfeiffer,
*Characters of finite Coxeter groups and Iwahori-Hecke algebras*, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR**1778802** - Meinolf Geck, Sungsoon Kim, and Götz Pfeiffer,
*Minimal length elements in twisted conjugacy classes of finite Coxeter groups*, J. Algebra**229**(2000), no. 2, 570–600. MR**1769289**, DOI 10.1006/jabr.1999.8253 - Xuhua He,
*Minimal length elements in some double cosets of Coxeter groups*, Adv. Math.**215**(2007), no. 2, 469–503. MR**2355597**, DOI 10.1016/j.aim.2007.04.005 - Xuhua He,
*On the affineness of Deligne-Lusztig varieties*, J. Algebra**320**(2008), no. 3, 1207–1219. MR**2427638**, DOI 10.1016/j.jalgebra.2007.12.028 - Xuhua He and George Lusztig,
*A generalization of Steinberg’s cross section*, J. Amer. Math. Soc.**25**(2012), no. 3, 739–757. MR**2904572**, DOI 10.1090/S0894-0347-2012-00728-0 - X. He and S. Nie,
*Minimal length elements of finite Coxeter groups*, arxiv:1108.0282. - George Lusztig,
*Representations of finite Chevalley groups*, CBMS Regional Conference Series in Mathematics, vol. 39, American Mathematical Society, Providence, R.I., 1978. Expository lectures from the CBMS Regional Conference held at Madison, Wis., August 8–12, 1977. MR**518617**, DOI 10.1090/cbms/039 - George Lusztig,
*Characters of reductive groups over a finite field*, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR**742472**, DOI 10.1515/9781400881772 - George Lusztig,
*Character sheaves. IV*, Adv. in Math.**59**(1986), no. 1, 1–63. MR**825086**, DOI 10.1016/0001-8708(86)90036-8 - G. Lusztig,
*Character sheaves on disconnected groups. I*, Represent. Theory**7**(2003), 374–403. MR**2017063**, DOI 10.1090/S1088-4165-03-00204-8 - G. Lusztig,
*Character sheaves on disconnected groups. II*, Represent. Theory**8**(2004), 72–124. MR**2048588**, DOI 10.1090/S1088-4165-04-00238-9 - G. Lusztig,
*From conjugacy classes in the Weyl group to unipotent classes*, Represent. Theory**15**(2011), 494–530. MR**2833465**, DOI 10.1090/S1088-4165-2011-00396-4 - G. Lusztig,
*From conjugacy classes in the Weyl group to unipotent classes, II*, Represent. Theory**16**(2012), 189–211. MR**2904567**, DOI 10.1090/S1088-4165-2012-00411-3 - G. Lusztig,
*Elliptic elements in a Weyl group: a homogeneity property*, Represent. Theory**16**(2012), 127–151. MR**2888173**, DOI 10.1090/S1088-4165-2012-00409-5 - G. Lusztig,
*On certain varieties attached to a Weyl group element*, Bull. Inst. Math. Acad. Sin. (N.S.)**6**(2011), no. 4, 377–414. MR**2907958** - George Lusztig and Ting Xue,
*Elliptic Weyl group elements and unipotent isometries with $p=2$*, Represent. Theory**16**(2012), 270–275. MR**2915753**, DOI 10.1090/S1088-4165-2012-00415-0 - Gunter Malle,
*Generalized Deligne-Lusztig characters*, J. Algebra**159**(1993), no. 1, 64–97. MR**1231204**, DOI 10.1006/jabr.1993.1147 - Gunter Malle,
*Green functions for groups of types $E_6$ and $F_4$ in characteristic $2$*, Comm. Algebra**21**(1993), no. 3, 747–798. MR**1204754**, DOI 10.1080/00927879308824595 - G. Malle,
*Personal communication, May 2011*. - Nicolas Spaltenstein,
*Classes unipotentes et sous-groupes de Borel*, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, Berlin-New York, 1982 (French). MR**672610**, DOI 10.1007/BFb0096302

## Bibliographic Information

**G. Lusztig**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Received by editor(s): October 13, 2011
- Received by editor(s) in revised form: May 11, 2012
- Published electronically: September 7, 2012
- Additional Notes: Supported in part by the National Science Foundation
- © Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory
**16**(2012), 450-488 - MSC (2010): Primary 20G99
- DOI: https://doi.org/10.1090/S1088-4165-2012-00422-8
- MathSciNet review: 2968566