From conjugacy classes in the Weyl group to unipotent classes, III
HTML articles powered by AMS MathViewer
- by G. Lusztig
- Represent. Theory 16 (2012), 450-488
- DOI: https://doi.org/10.1090/S1088-4165-2012-00422-8
- Published electronically: September 7, 2012
- PDF | Request permission
Abstract:
Let $G$ be an affine algebraic group over an algebraically closed field whose identity component $G^{0}$ is reductive. Let $W$ be the Weyl group of $G$ and let $D$ be a connected component of $G$ whose image in $G/G^{0}$ is unipotent. In this paper we define a map from the set of “twisted conjugacy classes” in $W$ to the set of unipotent $G^{0}$-conjugacy classes in $D$ generalizing an earlier construction which applied when $G$ is connected.References
- R. W. Carter, Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1–59. MR 318337
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, DOI 10.2307/1971021
- Meinolf Geck and Götz Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR 1778802
- Meinolf Geck, Sungsoon Kim, and Götz Pfeiffer, Minimal length elements in twisted conjugacy classes of finite Coxeter groups, J. Algebra 229 (2000), no. 2, 570–600. MR 1769289, DOI 10.1006/jabr.1999.8253
- Xuhua He, Minimal length elements in some double cosets of Coxeter groups, Adv. Math. 215 (2007), no. 2, 469–503. MR 2355597, DOI 10.1016/j.aim.2007.04.005
- Xuhua He, On the affineness of Deligne-Lusztig varieties, J. Algebra 320 (2008), no. 3, 1207–1219. MR 2427638, DOI 10.1016/j.jalgebra.2007.12.028
- Xuhua He and George Lusztig, A generalization of Steinberg’s cross section, J. Amer. Math. Soc. 25 (2012), no. 3, 739–757. MR 2904572, DOI 10.1090/S0894-0347-2012-00728-0
- X. He and S. Nie, Minimal length elements of finite Coxeter groups, arxiv:1108.0282.
- George Lusztig, Representations of finite Chevalley groups, CBMS Regional Conference Series in Mathematics, vol. 39, American Mathematical Society, Providence, R.I., 1978. Expository lectures from the CBMS Regional Conference held at Madison, Wis., August 8–12, 1977. MR 518617, DOI 10.1090/cbms/039
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- George Lusztig, Character sheaves. IV, Adv. in Math. 59 (1986), no. 1, 1–63. MR 825086, DOI 10.1016/0001-8708(86)90036-8
- G. Lusztig, Character sheaves on disconnected groups. I, Represent. Theory 7 (2003), 374–403. MR 2017063, DOI 10.1090/S1088-4165-03-00204-8
- G. Lusztig, Character sheaves on disconnected groups. II, Represent. Theory 8 (2004), 72–124. MR 2048588, DOI 10.1090/S1088-4165-04-00238-9
- G. Lusztig, From conjugacy classes in the Weyl group to unipotent classes, Represent. Theory 15 (2011), 494–530. MR 2833465, DOI 10.1090/S1088-4165-2011-00396-4
- G. Lusztig, From conjugacy classes in the Weyl group to unipotent classes, II, Represent. Theory 16 (2012), 189–211. MR 2904567, DOI 10.1090/S1088-4165-2012-00411-3
- G. Lusztig, Elliptic elements in a Weyl group: a homogeneity property, Represent. Theory 16 (2012), 127–151. MR 2888173, DOI 10.1090/S1088-4165-2012-00409-5
- G. Lusztig, On certain varieties attached to a Weyl group element, Bull. Inst. Math. Acad. Sin. (N.S.) 6 (2011), no. 4, 377–414. MR 2907958
- George Lusztig and Ting Xue, Elliptic Weyl group elements and unipotent isometries with $p=2$, Represent. Theory 16 (2012), 270–275. MR 2915753, DOI 10.1090/S1088-4165-2012-00415-0
- Gunter Malle, Generalized Deligne-Lusztig characters, J. Algebra 159 (1993), no. 1, 64–97. MR 1231204, DOI 10.1006/jabr.1993.1147
- Gunter Malle, Green functions for groups of types $E_6$ and $F_4$ in characteristic $2$, Comm. Algebra 21 (1993), no. 3, 747–798. MR 1204754, DOI 10.1080/00927879308824595
- G. Malle, Personal communication, May 2011.
- Nicolas Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, Berlin-New York, 1982 (French). MR 672610, DOI 10.1007/BFb0096302
Bibliographic Information
- G. Lusztig
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Received by editor(s): October 13, 2011
- Received by editor(s) in revised form: May 11, 2012
- Published electronically: September 7, 2012
- Additional Notes: Supported in part by the National Science Foundation
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 16 (2012), 450-488
- MSC (2010): Primary 20G99
- DOI: https://doi.org/10.1090/S1088-4165-2012-00422-8
- MathSciNet review: 2968566