Cell structures on the blob algebra
HTML articles powered by AMS MathViewer
- by Steen Ryom-Hansen PDF
- Represent. Theory 16 (2012), 540-567 Request permission
Abstract:
We consider the $r = 0$ case of the conjectures by Bonnafé, Geck, Iancu and Lam on cellular structures on the Hecke algebra of type $B$. We show that this case induces the natural cell structure on the blob algebra $b_n$ by restriction to one-line bipartitions.References
- Susumu Ariki, On the decomposition numbers of the Hecke algebra of $G(m,1,n)$, J. Math. Kyoto Univ. 36 (1996), no. 4, 789–808. MR 1443748, DOI 10.1215/kjm/1250518452
- Susumu Ariki, Robinson-Schensted correspondence and left cells, Combinatorial methods in representation theory (Kyoto, 1998) Adv. Stud. Pure Math., vol. 28, Kinokuniya, Tokyo, 2000, pp. 1–20. MR 1855588, DOI 10.2969/aspm/02810001
- Susumu Ariki, Tomohide Terasoma, and Hirofumi Yamada, Schur-Weyl reciprocity for the Hecke algebra of $(\textbf {Z}/r\textbf {Z})\wr S_n$, J. Algebra 178 (1995), no. 2, 374–390. MR 1359891, DOI 10.1006/jabr.1995.1354
- Dan Barbasch and David Vogan, Primitive ideals and orbital integrals in complex classical groups, Math. Ann. 259 (1982), no. 2, 153–199. MR 656661, DOI 10.1007/BF01457308
- Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005. MR 2133266
- Cédric Bonnafé, Two-sided cells in type $B$ (asymptotic case), J. Algebra 304 (2006), no. 1, 216–236. MR 2255826, DOI 10.1016/j.jalgebra.2006.05.035
- Cédric Bonnafé, Meinolf Geck, Lacrimioara Iancu, and Thomas Lam, On domino insertion and Kazhdan-Lusztig cells in type $B_n$, Representation theory of algebraic groups and quantum groups, Progr. Math., vol. 284, Birkhäuser/Springer, New York, 2010, pp. 33–54. MR 2761947, DOI 10.1007/978-0-8176-4697-4_{3}
- Cédric Bonnafé and Lacrimioara Iancu, Left cells in type $B_n$ with unequal parameters, Represent. Theory 7 (2003), 587–609. MR 2017068, DOI 10.1090/S1088-4165-03-00188-2
- Cédric Bonnafé and Nicolas Jacon, Cellular structures on Hecke algebras of type $B$, J. Algebra 321 (2009), no. 11, 3089–3111. MR 2510041, DOI 10.1016/j.jalgebra.2008.04.017
- Anton Cox, John Graham, and Paul Martin, The blob algebra in positive characteristic, J. Algebra 266 (2003), no. 2, 584–635. MR 1995129, DOI 10.1016/S0021-8693(03)00260-6
- Richard Dipper, Gordon James, and Eugene Murphy, Hecke algebras of type $B_n$ at roots of unity, Proc. London Math. Soc. (3) 70 (1995), no. 3, 505–528. MR 1317512, DOI 10.1112/plms/s3-70.3.505
- Christophe Carré and Bernard Leclerc, Splitting the square of a Schur function into its symmetric and antisymmetric parts, J. Algebraic Combin. 4 (1995), no. 3, 201–231. MR 1331743, DOI 10.1023/A:1022475927626
- Matthew Fayers, An LLT-type algorithm for computing higher-level canonical bases, J. Pure Appl. Algebra 214 (2010), no. 12, 2186–2198. MR 2660908, DOI 10.1016/j.jpaa.2010.02.021
- C. K. Fan and R. M. Green, Monomials and Temperley-Lieb algebras, J. Algebra 190 (1997), no. 2, 498–517. MR 1441960, DOI 10.1006/jabr.1996.6930
- Omar Foda, Bernard Leclerc, Masato Okado, Jean-Yves Thibon, and Trevor A. Welsh, Branching functions of $A^{(1)}_{n-1}$ and Jantzen-Seitz problem for Ariki-Koike algebras, Adv. Math. 141 (1999), no. 2, 322–365. MR 1671762, DOI 10.1006/aima.1998.1783
- Meinolf Geck, Kazhdan-Lusztig cells and the Murphy basis, Proc. London Math. Soc. (3) 93 (2006), no. 3, 635–665. MR 2266962, DOI 10.1017/S0024611506015930
- Devra Garfinkle, On the classification of primitive ideals for complex classical Lie algebra. II, Compositio Math. 81 (1992), no. 3, 307–336. MR 1149172
- J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), no. 1, 1–34. MR 1376244, DOI 10.1007/BF01232365
- J. J. Graham and G. I. Lehrer, Diagram algebras, Hecke algebras and decomposition numbers at roots of unity, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 4, 479–524 (English, with English and French summaries). MR 2013924, DOI 10.1016/S0012-9593(03)00020-X
- Michio Jimbo, Kailash C. Misra, Tetsuji Miwa, and Masato Okado, Combinatorics of representations of $U_q(\widehat {{\mathfrak {s}}{\mathfrak {l}}}(n))$ at $q=0$, Comm. Math. Phys. 136 (1991), no. 3, 543–566. MR 1099695
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- Thomas Lam, Growth diagrams, domino insertion and sign-imbalance, J. Combin. Theory Ser. A 107 (2004), no. 1, 87–115. MR 2063955, DOI 10.1016/j.jcta.2004.03.010
- G. Lusztig, Left cells in Weyl groups, Lie group representations, I (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1024, Springer, Berlin, 1983, pp. 99–111. MR 727851, DOI 10.1007/BFb0071433
- G. Lusztig, Hecke algebras with unequal parameters, CRM Monograph Series, vol. 18, American Mathematical Society, Providence, RI, 2003. MR 1974442, DOI 10.1090/crmm/018
- Nicolas Jacon, Crystal graphs of irreducible $\scr U_v(\widehat {\mathfrak {sl}}_e)$-modules of level two and Uglov bipartitions, J. Algebraic Combin. 27 (2008), no. 2, 143–162. MR 2375488, DOI 10.1007/s10801-007-0078-z
- Nicolas Jacon, An algorithm for the computation of the decomposition matrices for Ariki-Koike algebras, J. Algebra 292 (2005), no. 1, 100–109. MR 2166797, DOI 10.1016/j.jalgebra.2004.10.017
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- P. P. Martin and S. Ryom-Hansen, Virtual algebraic Lie theory: tilting modules and Ringel duals for blob algebras, Proc. London Math. Soc. (3) 89 (2004), no. 3, 655–675. MR 2107010, DOI 10.1112/S0024611504014789
- Paul Martin and Hubert Saleur, The blob algebra and the periodic Temperley-Lieb algebra, Lett. Math. Phys. 30 (1994), no. 3, 189–206. MR 1267001, DOI 10.1007/BF00805852
- Paul P. Martin and David Woodcock, On the structure of the blob algebra, J. Algebra 225 (2000), no. 2, 957–988. MR 1741573, DOI 10.1006/jabr.1999.7948
- Thomas Pietraho, Knuth relations for the hyperoctahedral groups, J. Algebraic Combin. 29 (2009), no. 4, 509–535. MR 2506719, DOI 10.1007/s10801-008-0148-x
- Thomas Pietraho, Module structure of cells in unequal-parameter Hecke algebras, Nagoya Math. J. 198 (2010), 23–45. MR 2666576, DOI 10.1215/00277630-2009-006
- Steen Ryom-Hansen, The Ariki-Terasoma-Yamada tensor space and the blob algebra, J. Algebra 324 (2010), no. 10, 2658–2675. MR 2725194, DOI 10.1016/j.jalgebra.2010.08.018
- Denis Uglov, Canonical bases of higher-level $q$-deformed Fock spaces and Kazhdan-Lusztig polynomials, Physical combinatorics (Kyoto, 1999) Progr. Math., vol. 191, Birkhäuser Boston, Boston, MA, 2000, pp. 249–299. MR 1768086
- Martin Schonert et al. GAP – Groups, Algorithms, and Programming – version 3 release 4 patchlevel 4" Lehrstuhl Dür Mathematik, Rheinisch Westf\accent127 alische Technische Hochschule, Aachen, Germany, 1997.
- Bruce E. Sagan, The symmetric group, 2nd ed., Graduate Texts in Mathematics, vol. 203, Springer-Verlag, New York, 2001. Representations, combinatorial algorithms, and symmetric functions. MR 1824028, DOI 10.1007/978-1-4757-6804-6
- Wolfgang Soergel, Kazhdan-Lusztig-Polynome und eine Kombinatorik für Kipp-Moduln, Represent. Theory 1 (1997), 37–68 (German, with English summary). MR 1445511, DOI 10.1090/S1088-4165-97-00006-X
- Müge Taşkın, Plactic relations for $r$-domino tableaux, Electron. J. Combin. 19 (2012), no. 1, Paper 38, 30. MR 2880669
- Marc A. A. van Leeuwen, The Robinson-Schensted and Schützenberger algorithms, an elementary approach, Electron. J. Combin. 3 (1996), no. 2, Research Paper 15, approx. 32. The Foata Festschrift. MR 1392500
- Xavier Yvonne, An algorithm for computing the canonical bases of higher-level $q$-deformed Fock spaces, J. Algebra 309 (2007), no. 2, 760–785. MR 2303205, DOI 10.1016/j.jalgebra.2006.10.014
Additional Information
- Steen Ryom-Hansen
- Affiliation: Instituto de Matemática y Física, Universidad de Talca, Chile
- Email: steen@inst-mat.utalca.cl
- Received by editor(s): December 20, 2010
- Received by editor(s) in revised form: March 7, 2011, March 1, 2012, and April 3, 2012
- Published electronically: November 6, 2012
- Additional Notes: This work was supported in part by FONDECYT grants 109070 and 1121129, by Programa Reticulados y Simetría and by the MathAmSud project OPECSHA 01-math-10.
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 16 (2012), 540-567
- MSC (2010): Primary 20G05, 20C08, 05E10
- DOI: https://doi.org/10.1090/S1088-4165-2012-00424-1
- MathSciNet review: 2993828