Deligne’s category $\underline {\operatorname {Re}}\!\operatorname {p}(GL_\delta )$ and representations of general linear supergroups
HTML articles powered by AMS MathViewer
- by Jonathan Comes and Benjamin Wilson
- Represent. Theory 16 (2012), 568-609
- DOI: https://doi.org/10.1090/S1088-4165-2012-00425-3
- Published electronically: December 3, 2012
- PDF | Request permission
Abstract:
We classify indecomposable summands of mixed tensor powers of the natural representation for the general linear supergroup up to isomorphism. We also give a formula for the characters of these summands in terms of composite supersymmetric Schur polynomials, and give a method for decomposing their tensor products. Along the way, we describe indecomposable objects in $\underline {\operatorname {Re}}\!\operatorname {p}(GL_\delta )$ and explain how to decompose their tensor products.References
- Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, 2nd ed., Graduate Texts in Mathematics, vol. 13, Springer-Verlag, New York, 1992. MR 1245487, DOI 10.1007/978-1-4612-4418-9
- Georgia Benkart, Manish Chakrabarti, Thomas Halverson, Robert Leduc, Chanyoung Lee, and Jeffrey Stroomer, Tensor product representations of general linear groups and their connections with Brauer algebras, J. Algebra 166 (1994), no. 3, 529–567. MR 1280591, DOI 10.1006/jabr.1994.1166
- D. J. Benson, Representations and cohomology. I, Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1991. Basic representation theory of finite groups and associative algebras. MR 1110581
- A. Berele and A. Regev, Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras, Adv. in Math. 64 (1987), no. 2, 118–175. MR 884183, DOI 10.1016/0001-8708(87)90007-7
- Jonathan Brundan and Catharina Stroppel, Gradings on walled Brauer algebras and Khovanov’s arc algebra, Adv. Math. 231 (2012), no. 2, 709–773. MR 2955190, DOI 10.1016/j.aim.2012.05.016
- Jonathan Brundan and Catharina Stroppel, Highest weight categories arising from Khovanov’s diagram algebra. II. Koszulity, Transform. Groups 15 (2010), no. 1, 1–45. MR 2600694, DOI 10.1007/s00031-010-9079-4
- Jonathan Brundan and Catharina Stroppel, Highest weight categories arising from Khovanov’s diagram algebra I: cellularity, Mosc. Math. J. 11 (2011), no. 4, 685–722, 821–822 (English, with English and Russian summaries). MR 2918294, DOI 10.17323/1609-4514-2011-11-4-685-722
- Jonathan Brundan and Catharina Stroppel, Highest weight categories arising from Khovanov’s diagram algebra III: category $\scr O$, Represent. Theory 15 (2011), 170–243. MR 2781018, DOI 10.1090/S1088-4165-2011-00389-7
- Jonathan Brundan and Catharina Stroppel, Highest weight categories arising from Khovanov’s diagram algebra IV: the general linear supergroup, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 2, 373–419. MR 2881300, DOI 10.4171/JEMS/306
- Jonathan Comes and Victor Ostrik, On blocks of Deligne’s category $\underline \textrm {Re}\textrm {p}(S_t)$, Adv. Math. 226 (2011), no. 2, 1331–1377. MR 2737787, DOI 10.1016/j.aim.2010.08.010
- Anton Cox and Maud De Visscher, Diagrammatic Kazhdan-Lusztig theory for the (walled) Brauer algebra, J. Algebra 340 (2011), 151–181. MR 2813567, DOI 10.1016/j.jalgebra.2011.05.024
- Anton Cox, Maud De Visscher, Stephen Doty, and Paul Martin, On the blocks of the walled Brauer algebra, J. Algebra 320 (2008), no. 1, 169–212. MR 2417984, DOI 10.1016/j.jalgebra.2008.01.026
- C. J. Cummins and R. C. King, Composite Young diagrams, supercharacters of $\textrm {U}(M/N)$ and modification rules, J. Phys. A 20 (1987), no. 11, 3121–3133. MR 914044, DOI 10.1088/0305-4470/20/11/018
- P. Deligne, La catégorie des représentations du groupe symétrique $S_t$, lorsque $t$ n’est pas un entier naturel, Algebraic groups and homogeneous spaces, Tata Inst. Fund. Res. Stud. Math., vol. 19, Tata Inst. Fund. Res., Mumbai, 2007, pp. 209–273 (French, with English and French summaries). MR 2348906
- Pierre Deligne, La série exceptionnelle de groupes de Lie, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 4, 321–326 (French, with English and French summaries). MR 1378507
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), no. 1, 1–34. MR 1376244, DOI 10.1007/BF01232365
- Kazuhiko Koike, On the decomposition of tensor products of the representations of the classical groups: by means of the universal characters, Adv. Math. 74 (1989), no. 1, 57–86. MR 991410, DOI 10.1016/0001-8708(89)90004-2
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- E. M. Moens and J. van der Jeugt, A determinantal formula for supersymmetric Schur polynomials, J. Algebraic Combin. 17 (2003), no. 3, 283–307. MR 2001672, DOI 10.1023/A:1025048821756
- E. M. Moens and J. Van der Jeugt, On characters and dimension formulas for representations of the Lie superalgebra ${\mathfrak {gl}}(m|n)$, Lie theory and its applications in physics V, World Sci. Publ., River Edge, NJ, 2004, pp. 64–73. MR 2172173, DOI 10.1142/9789812702562_{0}003
- P. Selinger, A survey of graphical languages for monoidal categories, New structures for physics, Lecture Notes in Phys., vol. 813, Springer, Heidelberg, 2011, pp. 289–355. MR 2767048, DOI 10.1007/978-3-642-12821-9_{4}
- Vera Serganova, Kazhdan-Lusztig polynomials and character formula for the Lie superalgebra ${\mathfrak {g}}{\mathfrak {l}}(m|n)$, Selecta Math. (N.S.) 2 (1996), no. 4, 607–651. MR 1443186, DOI 10.1007/PL00001385
- A. N. Sergeev, Representations of the Lie superalgebras ${\mathfrak {g}l}(n,\,m)$ and $Q(n)$ in a space of tensors, Funktsional. Anal. i Prilozhen. 18 (1984), no. 1, 80–81 (Russian). MR 739101
- John R. Stembridge, Rational tableaux and the tensor algebra of $\textrm {gl}_n$, J. Combin. Theory Ser. A 46 (1987), no. 1, 79–120. MR 899903, DOI 10.1016/0097-3165(87)90077-X
- V. G. Turaev, Operator invariants of tangles, and $R$-matrices, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 5, 1073–1107, 1135 (Russian); English transl., Math. USSR-Izv. 35 (1990), no. 2, 411–444. MR 1024455, DOI 10.1070/IM1990v035n02ABEH000711
- Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158
Bibliographic Information
- Jonathan Comes
- Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403
- Email: jcomes@uoregon.edu
- Benjamin Wilson
- Affiliation: Dieffenbachstraße 27, 10967 Berlin, Germany
- Email: benjamin@asmusas.net
- Received by editor(s): September 5, 2011
- Received by editor(s) in revised form: July 31, 2012
- Published electronically: December 3, 2012
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 16 (2012), 568-609
- MSC (2010): Primary 17B10, 18D10
- DOI: https://doi.org/10.1090/S1088-4165-2012-00425-3
- MathSciNet review: 2998810