## Tempered representations and nilpotent orbits

HTML articles powered by AMS MathViewer

- by Benjamin Harris PDF
- Represent. Theory
**16**(2012), 610-619 Request permission

## Abstract:

Given a nilpotent orbit $\mathcal {O}$ of a real, reductive algebraic group, a necessary condition is given for the existence of a tempered representation $\pi$ such that $\mathcal {O}$ occurs in the wave front cycle of $\pi$. The coefficients of the wave front cycle of a tempered representation are expressed in terms of volumes of precompact submanifolds of an affine space.## References

- P. Bala and R. W. Carter,
*Classes of unipotent elements in simple algebraic groups. I*, Math. Proc. Cambridge Philos. Soc.**79**(1976), no. 3, 401–425. MR**417306**, DOI 10.1017/S0305004100052403 - Dan Barbasch and David A. Vogan Jr.,
*The local structure of characters*, J. Functional Analysis**37**(1980), no. 1, 27–55. MR**576644**, DOI 10.1016/0022-1236(80)90026-9 - David H. Collingwood and William M. McGovern,
*Nilpotent orbits in semisimple Lie algebras*, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR**1251060** - Harish-Chandra,
*Some results on an invariant integral on a semisimple Lie algebra*, Ann. of Math. (2)**80**(1964), 551–593. MR**180629**, DOI 10.2307/1970664 - A. A. Kirillov,
*Lectures on the orbit method*, Graduate Studies in Mathematics, vol. 64, American Mathematical Society, Providence, RI, 2004. MR**2069175**, DOI 10.1090/gsm/064 - C. Mœglin,
*Front d’onde des représentations des groupes classiques $p$-adiques*, Amer. J. Math.**118**(1996), no. 6, 1313–1346 (French, with French summary). MR**1420926**, DOI 10.1353/ajm.1996.0051 - C. Mœglin and J.-L. Waldspurger,
*Modèles de Whittaker dégénérés pour des groupes $p$-adiques*, Math. Z.**196**(1987), no. 3, 427–452 (French). MR**913667**, DOI 10.1007/BF01200363 - Alfred G. Noël,
*Nilpotent orbits and theta-stable parabolic subalgebras*, Represent. Theory**2**(1998), 1–32. MR**1600330**, DOI 10.1090/S1088-4165-98-00038-7 - W. Rossmann,
*Limit orbits in reductive Lie algebras*, Duke Math. J.**49**(1982), no. 1, 215–229. MR**650378**, DOI 10.1215/S0012-7094-82-04914-6 - W. Rossmann,
*Limit characters of reductive Lie groups*, Invent. Math.**61**(1980), no. 1, 53–66. MR**587333**, DOI 10.1007/BF01389894 - W. Rossmann,
*Tempered representations and orbits*, Duke Math. J.**49**(1982), no. 1, 231–247. MR**650379**, DOI 10.1215/S0012-7094-82-04915-8 - W. Rossmann,
*Picard-Lefschetz theory and characters of a semisimple Lie group*, Invent. Math.**121**(1995), no. 3, 579–611. MR**1353309**, DOI 10.1007/BF01884312 - Wilfried Schmid and Kari Vilonen,
*Characteristic cycles and wave front cycles of representations of reductive Lie groups*, Ann. of Math. (2)**151**(2000), no. 3, 1071–1118. MR**1779564**, DOI 10.2307/121129 - Atsuko Yamamoto,
*Orbits in the flag variety and images of the moment map for classical groups. I*, Represent. Theory**1**(1997), 329–404. MR**1479152**, DOI 10.1090/S1088-4165-97-00007-1

## Additional Information

**Benjamin Harris**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 844407
- Email: blharris@math.mit.edu
- Received by editor(s): October 19, 2010
- Received by editor(s) in revised form: May 28, 2011, and September 18, 2011
- Published electronically: December 13, 2012
- © Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory
**16**(2012), 610-619 - MSC (2010): Primary 22E46; Secondary 43A65, 22E45
- DOI: https://doi.org/10.1090/S1088-4165-2012-00414-9
- MathSciNet review: 3001468