Tempered representations and nilpotent orbits
HTML articles powered by AMS MathViewer
- by Benjamin Harris PDF
- Represent. Theory 16 (2012), 610-619 Request permission
Abstract:
Given a nilpotent orbit $\mathcal {O}$ of a real, reductive algebraic group, a necessary condition is given for the existence of a tempered representation $\pi$ such that $\mathcal {O}$ occurs in the wave front cycle of $\pi$. The coefficients of the wave front cycle of a tempered representation are expressed in terms of volumes of precompact submanifolds of an affine space.References
- P. Bala and R. W. Carter, Classes of unipotent elements in simple algebraic groups. I, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 3, 401–425. MR 417306, DOI 10.1017/S0305004100052403
- Dan Barbasch and David A. Vogan Jr., The local structure of characters, J. Functional Analysis 37 (1980), no. 1, 27–55. MR 576644, DOI 10.1016/0022-1236(80)90026-9
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Harish-Chandra, Some results on an invariant integral on a semisimple Lie algebra, Ann. of Math. (2) 80 (1964), 551–593. MR 180629, DOI 10.2307/1970664
- A. A. Kirillov, Lectures on the orbit method, Graduate Studies in Mathematics, vol. 64, American Mathematical Society, Providence, RI, 2004. MR 2069175, DOI 10.1090/gsm/064
- C. Mœglin, Front d’onde des représentations des groupes classiques $p$-adiques, Amer. J. Math. 118 (1996), no. 6, 1313–1346 (French, with French summary). MR 1420926, DOI 10.1353/ajm.1996.0051
- C. Mœglin and J.-L. Waldspurger, Modèles de Whittaker dégénérés pour des groupes $p$-adiques, Math. Z. 196 (1987), no. 3, 427–452 (French). MR 913667, DOI 10.1007/BF01200363
- Alfred G. Noël, Nilpotent orbits and theta-stable parabolic subalgebras, Represent. Theory 2 (1998), 1–32. MR 1600330, DOI 10.1090/S1088-4165-98-00038-7
- W. Rossmann, Limit orbits in reductive Lie algebras, Duke Math. J. 49 (1982), no. 1, 215–229. MR 650378, DOI 10.1215/S0012-7094-82-04914-6
- W. Rossmann, Limit characters of reductive Lie groups, Invent. Math. 61 (1980), no. 1, 53–66. MR 587333, DOI 10.1007/BF01389894
- W. Rossmann, Tempered representations and orbits, Duke Math. J. 49 (1982), no. 1, 231–247. MR 650379, DOI 10.1215/S0012-7094-82-04915-8
- W. Rossmann, Picard-Lefschetz theory and characters of a semisimple Lie group, Invent. Math. 121 (1995), no. 3, 579–611. MR 1353309, DOI 10.1007/BF01884312
- Wilfried Schmid and Kari Vilonen, Characteristic cycles and wave front cycles of representations of reductive Lie groups, Ann. of Math. (2) 151 (2000), no. 3, 1071–1118. MR 1779564, DOI 10.2307/121129
- Atsuko Yamamoto, Orbits in the flag variety and images of the moment map for classical groups. I, Represent. Theory 1 (1997), 329–404. MR 1479152, DOI 10.1090/S1088-4165-97-00007-1
Additional Information
- Benjamin Harris
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 844407
- Email: blharris@math.mit.edu
- Received by editor(s): October 19, 2010
- Received by editor(s) in revised form: May 28, 2011, and September 18, 2011
- Published electronically: December 13, 2012
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 16 (2012), 610-619
- MSC (2010): Primary 22E46; Secondary 43A65, 22E45
- DOI: https://doi.org/10.1090/S1088-4165-2012-00414-9
- MathSciNet review: 3001468