Frobenius–Schur indicators of unipotent characters and the twisted involution module
HTML articles powered by AMS MathViewer
- by Meinolf Geck and Gunter Malle
- Represent. Theory 17 (2013), 180-198
- DOI: https://doi.org/10.1090/S1088-4165-2013-00430-2
- Published electronically: April 1, 2013
- PDF | Request permission
Abstract:
Let $W$ be a finite Weyl group and $\sigma$ a non-trivial graph automorphism of $W$. We show a remarkable relation between the $\sigma$-twisted involution module for $W$ and the Frobenius–Schur indicators of the unipotent characters of a corresponding twisted finite group of Lie type. This extends earlier results of Lusztig and Vogan for the untwisted case and then allows us to state a general result valid for any finite group of Lie type. Inspired by recent work of Marberg, we also formally define Frobenius–Schur indicators for “unipotent characters” of twisted dihedral groups.References
- Bill Casselman, Verifying Kottwitz’ conjecture by computer, Represent. Theory 4 (2000), 32–45. MR 1740179, DOI 10.1090/S1088-4165-00-00052-2
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, DOI 10.2307/1971021
- Meinolf Geck, Character values, Schur indices and character sheaves, Represent. Theory 7 (2003), 19–55. MR 1973366, DOI 10.1090/S1088-4165-03-00170-5
- Meinolf Geck and Gunter Malle, Fourier transforms and Frobenius eigenvalues for finite Coxeter groups, J. Algebra 260 (2003), no. 1, 162–193. Special issue celebrating the 80th birthday of Robert Steinberg. MR 1973582, DOI 10.1016/S0021-8693(02)00631-2
- Meinolf Geck and Götz Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR 1778802
- Robert E. Kottwitz, Involutions in Weyl groups, Represent. Theory 4 (2000), 1–15. MR 1740177, DOI 10.1090/S1088-4165-00-00050-9
- George Lusztig, Representations of finite Chevalley groups, CBMS Regional Conference Series in Mathematics, vol. 39, American Mathematical Society, Providence, R.I., 1978. Expository lectures from the CBMS Regional Conference held at Madison, Wis., August 8–12, 1977. MR 518617, DOI 10.1090/cbms/039
- G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977), no. 2, 125–175. MR 463275, DOI 10.1007/BF01390002
- George Lusztig, On the unipotent characters of the exceptional groups over finite fields, Invent. Math. 60 (1980), no. 2, 173–192. MR 586426, DOI 10.1007/BF01405152
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- George Lusztig, Character sheaves. IV, Adv. in Math. 59 (1986), no. 1, 1–63. MR 825086, DOI 10.1016/0001-8708(86)90036-8
- George Lusztig, Exotic Fourier transform, Duke Math. J. 73 (1994), no. 1, 227–241, 243–248. With an appendix by Gunter Malle. MR 1257284, DOI 10.1215/S0012-7094-94-07309-2
- G. Lusztig, Rationality properties of unipotent representations, J. Algebra 258 (2002), no. 1, 1–22. Special issue in celebration of Claudio Procesi’s 60th birthday. MR 1958895, DOI 10.1016/S0021-8693(02)00514-8
- G. Lusztig, A bar operator for involutions in a Coxeter group. Bull. Inst. Math. Acad. Sinica (N.S.) 7 (2012), 355–404.
- G. Lusztig, Asymptotic Hecke algebras and involutions. Preprint, arXiv:1204.0276v1.
- G. Lusztig and D. Vogan, Hecke algebras and involutions in Weyl groups. Bull. Inst. Math. Acad. Sinica (N.S.) 7 (2012), 323–354.
- E. Marberg, How to compute the Frobenius–Schur indicator of a unipotent character of a finite Coxeter system. Preprint, arXiv:1202.1311.
- J. Michel, Development version of the GAP-part of CHEVIE. Webpage and GAP3 package; see http://people.math.jussieu.fr/˜jmichel/chevie/chevie.html
- Zyozyu Ohmori, The Schur indices of the cuspidal unipotent characters of the finite unitary groups, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 6, 111–113. MR 1404484
Bibliographic Information
- Meinolf Geck
- Affiliation: Institute of Mathematics, Aberdeen University, Aberdeen AB24 3UE, Scotland, UK.
- Address at time of publication: IAZ – Lehrstuhl für Algebra, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- MR Author ID: 272405
- Email: meinolf.geck@mathematik.uni-stuttgart.de
- Gunter Malle
- Affiliation: FB Mathematik, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany.
- MR Author ID: 225462
- Email: malle@mathematik.uni-kl.de
- Received by editor(s): April 22, 2012
- Received by editor(s) in revised form: October 10, 2012
- Published electronically: April 1, 2013
- © Copyright 2013 American Mathematical Society
- Journal: Represent. Theory 17 (2013), 180-198
- MSC (2010): Primary 20C15; Secondary 20C33
- DOI: https://doi.org/10.1090/S1088-4165-2013-00430-2
- MathSciNet review: 3037782