## The Capelli identity for Grassmann manifolds

HTML articles powered by AMS MathViewer

- by Siddhartha Sahi
- Represent. Theory
**17**(2013), 326-336 - DOI: https://doi.org/10.1090/S1088-4165-2013-00434-X
- Published electronically: June 7, 2013
- PDF | Request permission

## Abstract:

The column space of a real $n\times k$ matrix $x$ of rank $k$ is a $k$-plane. Thus we get a map from the space $X$ of such matrices to the Grassmannian $\mathbb {G}$ of $k$-planes in $\mathbb {R}^{n}$, and hence a $GL_{n}$-equivariant isomorphism \[ C^{\infty }\left ( \mathbb {G}\right ) \approx C^{\infty }\left ( X\right ) ^{GL_{k}}\text {.} \] We consider the $O_{n}\times GL_{k}$-invariant differential operator $C$ on $X$ given by \[ C=\det \left ( x^{t}x\right ) \det \left ( \partial ^{t}\partial \right ),\quad \text {where }x=\left ( x_{ij}\right ),\text { }\partial =\left ( \frac {\partial }{\partial x_{ij}}\right ). \] By the above isomorphism, $C$ defines an $O_{n}$-invariant operator on $\mathbb {G}$.

Since $\mathbb {G}$ is a symmetric space for $O_{n}$, the irreducible $O_{n}$-submodules of $C^{\infty }\left ( \mathbb {G}\right )$ have multiplicity 1; thus, $O_{n}$-invariant operators act by scalars on these submodules. Our main result determines these scalars for a general class of such operators including $C$. This answers a question raised by Howe and Lee and also gives new Capelli-type identities for the orthogonal Lie algebra.

## References

- M. Atiyah, R. Bott, and V. K. Patodi,
*On the heat equation and the index theorem*, Invent. Math.**19**(1973), 279–330. MR**650828**, DOI 10.1007/BF01425417 - Armand Borel,
*Essays in the history of Lie groups and algebraic groups*, History of Mathematics, vol. 21, American Mathematical Society, Providence, RI; London Mathematical Society, Cambridge, 2001. MR**1847105**, DOI 10.1090/hmath/021 - Alfredo Capelli,
*Ueber die Zurückführung der Cayley’schen Operation $\Omega$ auf gewöhnliche Polar-Operationen*, Math. Ann.**29**(1887), no. 3, 331–338 (German). MR**1510419**, DOI 10.1007/BF01447728 - Sergio Caracciolo, Alan D. Sokal, and Andrea Sportiello,
*Noncommutative determinants, Cauchy-Binet formulae, and Capelli-type identities. I. Generalizations of the Capelli and Turnbull identities*, Electron. J. Combin.**16**(2009), no. 1, Research Paper 103, 43. MR**2529812**, DOI 10.37236/192 - William Fulton,
*Young tableaux*, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. MR**1464693** - Sigurdur Helgason,
*Groups and geometric analysis*, Mathematical Surveys and Monographs, vol. 83, American Mathematical Society, Providence, RI, 2000. Integral geometry, invariant differential operators, and spherical functions; Corrected reprint of the 1984 original. MR**1790156**, DOI 10.1090/surv/083 - Roger Howe,
*Remarks on classical invariant theory*, Trans. Amer. Math. Soc.**313**(1989), no. 2, 539–570. MR**986027**, DOI 10.1090/S0002-9947-1989-0986027-X - Roger Howe,
*Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond*, The Schur lectures (1992) (Tel Aviv), Israel Math. Conf. Proc., vol. 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 1–182. MR**1321638** - Roger Howe and Soo Teck Lee,
*Spherical harmonics on Grassmannians*, Colloq. Math.**118**(2010), no. 1, 349–364. MR**2600534**, DOI 10.4064/cm118-1-19 - Roger Howe and T\B{o}ru Umeda,
*The Capelli identity, the double commutant theorem, and multiplicity-free actions*, Math. Ann.**290**(1991), no. 3, 565–619. MR**1116239**, DOI 10.1007/BF01459261 - Minoru Itoh,
*Capelli elements for the orthogonal Lie algebras*, J. Lie Theory**10**(2000), no. 2, 463–489. MR**1774874** - Minoru Itoh,
*Capelli identities for reductive dual pairs*, Adv. Math.**194**(2005), no. 2, 345–397. MR**2139918**, DOI 10.1016/j.aim.2004.06.010 - Bertram Kostant and Siddhartha Sahi,
*The Capelli identity, tube domains, and the generalized Laplace transform*, Adv. Math.**87**(1991), no. 1, 71–92. MR**1102965**, DOI 10.1016/0001-8708(91)90062-C - Bertram Kostant and Siddhartha Sahi,
*Jordan algebras and Capelli identities*, Invent. Math.**112**(1993), no. 3, 657–664. MR**1218328**, DOI 10.1007/BF01232451 - Alexander Molev and Maxim Nazarov,
*Capelli identities for classical Lie algebras*, Math. Ann.**313**(1999), no. 2, 315–357. MR**1679788**, DOI 10.1007/s002080050263 - Maxim Nazarov,
*Yangians and Capelli identities*, Kirillov’s seminar on representation theory, Amer. Math. Soc. Transl. Ser. 2, vol. 181, Amer. Math. Soc., Providence, RI, 1998, pp. 139–163. MR**1618751**, DOI 10.1090/trans2/181/05 - Andrei Okounkov,
*Quantum immanants and higher Capelli identities*, Transform. Groups**1**(1996), no. 1-2, 99–126. MR**1390752**, DOI 10.1007/BF02587738 - Andrei Okounkov,
*Young basis, Wick formula, and higher Capelli identities*, Internat. Math. Res. Notices**17**(1996), 817–839. MR**1420550**, DOI 10.1155/S1073792896000505 - Siddhartha Sahi,
*The spectrum of certain invariant differential operators associated to a Hermitian symmetric space*, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 569–576. MR**1327549**, DOI 10.1007/978-1-4612-0261-5_{2}1 - Hermann Weyl,
*The classical groups*, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR**1488158**

## Bibliographic Information

**Siddhartha Sahi**- Affiliation: Department of Mathematics, Rutgers University, New Brunswick, New Jersey
- MR Author ID: 153000
- Email: sahi@math.rutgers.edu
- Received by editor(s): April 28, 2012
- Received by editor(s) in revised form: December 13, 2012
- Published electronically: June 7, 2013
- © Copyright 2013
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory
**17**(2013), 326-336 - MSC (2010): Primary 22E46, 43A90
- DOI: https://doi.org/10.1090/S1088-4165-2013-00434-X
- MathSciNet review: 3063840