Rank 2 affine MV polytopes
HTML articles powered by AMS MathViewer
- by Pierre Baumann, Thomas Dunlap, Joel Kamnitzer and Peter Tingley
- Represent. Theory 17 (2013), 442-468
- DOI: https://doi.org/10.1090/S1088-4165-2013-00438-7
- Published electronically: August 5, 2013
- PDF | Request permission
Abstract:
We give a realization of the crystal $B(-\infty )$ for $\widehat {\mathrm {sl}}_2$ using decorated polygons. The construction and proof are combinatorial, making use of Kashiwara and Saito’s characterization of $B(-\infty )$, in terms of the $*$ involution. The polygons we use have combinatorial properties suggesting they are the $\widehat {\mathrm {sl}}_2$ analogues of the Mirković-Vilonen polytopes defined by Anderson and the third author in finite type. Using Kashiwara’s similarity of crystals we also give MV polytopes for $A_2^{(2)}$, the other rank 2 affine Kac-Moody algebra.References
- Jared E. Anderson, A polytope calculus for semisimple groups, Duke Math. J. 116 (2003), no. 3, 567–588. MR 1958098, DOI 10.1215/S0012-7094-03-11636-1
- Pierre Baumann, Joel Kamnitzer, and Peter Tingley. Affine Mirković-Vilonen polytopes. Preprint. arXiv:1110.3661.
- Jonathan Beck, Vyjayanthi Chari, and Andrew Pressley, An algebraic characterization of the affine canonical basis, Duke Math. J. 99 (1999), no. 3, 455–487. MR 1712630, DOI 10.1215/S0012-7094-99-09915-5
- Ilaria Damiani, A basis of type Poincaré-Birkhoff-Witt for the quantum algebra of $\widehat {\mathrm {sl}}(2)$, J. Algebra 161 (1993), no. 2, 291–310. MR 1247357, DOI 10.1006/jabr.1993.1220
- Thomas Rough Dunlap II, Combinatorial representation theory of affine sl2 via polytope calculus, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)–Northwestern University. MR 2736801
- Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, vol. 42, American Mathematical Society, Providence, RI, 2002. MR 1881971, DOI 10.1090/gsm/042
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Joel Kamnitzer, The crystal structure on the set of Mirković-Vilonen polytopes, Adv. Math. 215 (2007), no. 1, 66–93. MR 2354986, DOI 10.1016/j.aim.2007.03.012
- Joel Kamnitzer, Mirković-Vilonen cycles and polytopes, Ann. of Math. (2) 171 (2010), no. 1, 245–294. MR 2630039, DOI 10.4007/annals.2010.171.245
- Masaki Kashiwara, The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J. 71 (1993), no. 3, 839–858. MR 1240605, DOI 10.1215/S0012-7094-93-07131-1
- Masaki Kashiwara, On crystal bases, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 155–197. MR 1357199
- Masaki Kashiwara, Similarity of crystal bases, Lie algebras and their representations (Seoul, 1995) Contemp. Math., vol. 194, Amer. Math. Soc., Providence, RI, 1996, pp. 177–186. MR 1395599, DOI 10.1090/conm/194/02393
- Masaki Kashiwara and Yoshihisa Saito, Geometric construction of crystal bases, Duke Math. J. 89 (1997), no. 1, 9–36. MR 1458969, DOI 10.1215/S0012-7094-97-08902-X
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- Dinakar Muthiah, Double MV cycles and the Naito-Sagaki-Saito crystal, Adv. Math. 240 (2013), 268–290. MR 3046309, DOI 10.1016/j.aim.2013.02.019
- Dinakar Muthiah and Peter Tingley, Affine PBW bases and MV polytopes in rank $2$, Selecta Mathematica, published on line January 24, 2013, DOI 10.1007/s0029-012-0117-z.
- Satoshi Naito, Daisuke Sagaki, and Yoshihisa Saito, Toward Berenstein-Zelevinsky data in affine type $A$, part I: Construction of the affine analogs, Algebraic groups and quantum groups, Contemp. Math., vol. 565, Amer. Math. Soc., Providence, RI, 2012, pp. 143–184. MR 2932426, DOI 10.1090/conm/565/11180
Bibliographic Information
- Pierre Baumann
- Affiliation: Institut de Recherche Mathématique Avancée, Université de Strasbourg et CNRS, 7 rue René Descartes, 67084 Strasbourg Cedex, France
- Email: p.baumann@unistra.fr
- Thomas Dunlap
- Affiliation: Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Email: tdunlap@umich.edu
- Joel Kamnitzer
- Affiliation: Department of Mathematics, University of Toronto, Toronto, ON, M5S 2E4 Canada
- MR Author ID: 676374
- Email: jkamnitz@math.toronto.edu
- Peter Tingley
- Affiliation: Department of Mathematics and Statistics, Loyola University, Chicago, Illinois 60660
- MR Author ID: 679482
- Email: ptingley@luc.edu
- Received by editor(s): May 9, 2012
- Received by editor(s) in revised form: February 7, 2013
- Published electronically: August 5, 2013
- Additional Notes: The first author acknowledges support from the ANR, project ANR-09-JCJC-0102-01
The second author acknowledges support from the ERC, project #247049(GLC)
The third author acknowledges support from NSERC
The fourth author acknowledges support from the NSF postdoctoral fellowship DMS-0902649. - © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 17 (2013), 442-468
- MSC (2010): Primary 05E10; Secondary 17B67, 52B20
- DOI: https://doi.org/10.1090/S1088-4165-2013-00438-7
- MathSciNet review: 3084418