Demazure modules and graded limits of minimal affinizations
HTML articles powered by AMS MathViewer
- by Katsuyuki Naoi
- Represent. Theory 17 (2013), 524-556
- DOI: https://doi.org/10.1090/S1088-4165-2013-00442-9
- Published electronically: October 28, 2013
- PDF | Request permission
Abstract:
For a minimal affinization over a quantum loop algebra of type $BC$, we provide a character formula in terms of Demazure operators and multiplicities in terms of crystal bases. We also prove the formula for the limit of characters conjectured by Mukhin and Young. These are achieved by verifying that its graded limit (a variant of a classical limit) is isomorphic to some multiple generalization of a Demazure module, and by determining the defining relations of the graded limit.References
- Jonathan Beck, Braid group action and quantum affine algebras, Comm. Math. Phys. 165 (1994), no. 3, 555–568. MR 1301623, DOI 10.1007/BF02099423
- Vyjayanthi Chari and Jacob Greenstein, Minimal affinizations as projective objects, J. Geom. Phys. 61 (2011), no. 3, 594–609. MR 2763623, DOI 10.1016/j.geomphys.2010.11.008
- Vyjayanthi Chari and David Hernandez, Beyond Kirillov-Reshetikhin modules, Quantum affine algebras, extended affine Lie algebras, and their applications, Contemp. Math., vol. 506, Amer. Math. Soc., Providence, RI, 2010, pp. 49–81. MR 2642561, DOI 10.1090/conm/506/09935
- Vyjayanthi Chari, Minimal affinizations of representations of quantum groups: the rank $2$ case, Publ. Res. Inst. Math. Sci. 31 (1995), no. 5, 873–911. MR 1367675, DOI 10.2977/prims/1195163722
- Vyjayanthi Chari, On the fermionic formula and the Kirillov-Reshetikhin conjecture, Internat. Math. Res. Notices 12 (2001), 629–654. MR 1836791, DOI 10.1155/S1073792801000332
- Vyjayanthi Chari, Braid group actions and tensor products, Int. Math. Res. Not. 7 (2002), 357–382. MR 1883181, DOI 10.1155/S107379280210612X
- Vyjayanthi Chari and Adriano A. Moura, Characters of fundamental representations of quantum affine algebras, Acta Appl. Math. 90 (2006), no. 1-2, 43–63. MR 2242948, DOI 10.1007/s10440-006-9030-9
- Vyjayanthi Chari and Adriano Moura, The restricted Kirillov-Reshetikhin modules for the current and twisted current algebras, Comm. Math. Phys. 266 (2006), no. 2, 431–454. MR 2238884, DOI 10.1007/s00220-006-0032-2
- Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras, Comm. Math. Phys. 142 (1991), no. 2, 261–283. MR 1137064, DOI 10.1007/BF02102063
- Vyjayanthi Chari and Andrew Pressley, A guide to quantum groups, Cambridge University Press, Cambridge, 1994. MR 1300632
- Vyjayanthi Chari and Andrew Pressley, Minimal affinizations of representations of quantum groups: the nonsimply-laced case, Lett. Math. Phys. 35 (1995), no. 2, 99–114. MR 1347873, DOI 10.1007/BF00750760
- Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras and their representations, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 59–78. MR 1357195, DOI 10.1007/BF00750760
- Vyjayanthi Chari and Andrew Pressley, Minimal affinizations of representations of quantum groups: the irregular case, Lett. Math. Phys. 36 (1996), no. 3, 247–266. MR 1376937, DOI 10.1007/BF00943278
- Vyjayanthi Chari and Andrew Pressley, Minimal affinizations of representations of quantum groups: the simply laced case, J. Algebra 184 (1996), no. 1, 1–30. MR 1402568, DOI 10.1006/jabr.1996.0247
- Vyjayanthi Chari and Andrew Pressley, Weyl modules for classical and quantum affine algebras, Represent. Theory 5 (2001), 191–223. MR 1850556, DOI 10.1090/S1088-4165-01-00115-7
- V. G. Drinfel′d, A new realization of Yangians and of quantum affine algebras, Dokl. Akad. Nauk SSSR 296 (1987), no. 1, 13–17 (Russian); English transl., Soviet Math. Dokl. 36 (1988), no. 2, 212–216. MR 914215
- G. Fourier and P. Littelmann, Tensor product structure of affine Demazure modules and limit constructions, Nagoya Math. J. 182 (2006), 171–198. MR 2235341, DOI 10.1017/S0027763000026866
- G. Fourier and P. Littelmann, Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions, Adv. Math. 211 (2007), no. 2, 566–593. MR 2323538, DOI 10.1016/j.aim.2006.09.002
- Edward Frenkel and Evgeny Mukhin, Combinatorics of $q$-characters of finite-dimensional representations of quantum affine algebras, Comm. Math. Phys. 216 (2001), no. 1, 23–57. MR 1810773, DOI 10.1007/s002200000323
- Edward Frenkel and Nicolai Reshetikhin, The $q$-characters of representations of quantum affine algebras and deformations of $\scr W$-algebras, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998) Contemp. Math., vol. 248, Amer. Math. Soc., Providence, RI, 1999, pp. 163–205. MR 1745260, DOI 10.1090/conm/248/03823
- David Hernandez, On minimal affinizations of representations of quantum groups, Comm. Math. Phys. 276 (2007), no. 1, 221–259. MR 2342293, DOI 10.1007/s00220-007-0332-1
- David Hernandez, Smallness problem for quantum affine algebras and quiver varieties, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 2, 271–306 (English, with English and French summaries). MR 2468483, DOI 10.24033/asens.2068
- David Hernandez and Michio Jimbo, Asymptotic representations and Drinfeld rational fractions, Compos. Math. 148 (2012), no. 5, 1593–1623. MR 2982441, DOI 10.1112/S0010437X12000267
- Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, vol. 42, American Mathematical Society, Providence, RI, 2002. MR 1881971, DOI 10.1090/gsm/042
- Michio Jimbo, A $q$-analogue of $U({\mathfrak {g}}{\mathfrak {l}}(N+1))$, Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), no. 3, 247–252. MR 841713, DOI 10.1007/BF00400222
- A. Joseph, On the Demazure character formula, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 3, 389–419. MR 826100, DOI 10.24033/asens.1493
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1923198, DOI 10.1007/978-1-4612-0105-2
- Venkatramani Lakshmibai, Peter Littelmann, and Peter Magyar, Standard monomial theory for Bott-Samelson varieties, Compositio Math. 130 (2002), no. 3, 293–318. MR 1887117, DOI 10.1023/A:1014396129323
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- Adriano Moura, Restricted limits of minimal affinizations, Pacific J. Math. 244 (2010), no. 2, 359–397. MR 2587436, DOI 10.2140/pjm.2010.244.359
- Adriano Moura and Fernanda Pereira, Graded limits of minimal affinizations and beyond: the multiplicity free case for type $E_6$, Algebra Discrete Math. 12 (2011), no. 1, 69–115. MR 2896463
- E. Mukhin and C. A. S. Young. Affinization of category $\mathcal {O}$ for quantum groups, Trans. Amer. Math. Soc., 2013.
- Katsuyuki Naoi, Fusion products of Kirillov-Reshetikhin modules and the $X=M$ conjecture, Adv. Math. 231 (2012), no. 3-4, 1546–1571. MR 2964614, DOI 10.1016/j.aim.2012.07.003
Bibliographic Information
- Katsuyuki Naoi
- Affiliation: University of Tokyo, Kavli Institute for the Physics and Mathematics of the Universe, 5-1-5 Kashiwanoha, Kashiwa, 277-8583 Japan
- Email: katsuyuki.naoi@ipmu.jp
- Received by editor(s): October 5, 2012
- Received by editor(s) in revised form: May 12, 2013, and June 17, 2013
- Published electronically: October 28, 2013
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Represent. Theory 17 (2013), 524-556
- MSC (2010): Primary 17B10, 17B37; Secondary 20G42
- DOI: https://doi.org/10.1090/S1088-4165-2013-00442-9
- MathSciNet review: 3120578