Equivariant coherent sheaves on the exotic nilpotent cone
HTML articles powered by AMS MathViewer
- by Vinoth Nandakumar
- Represent. Theory 17 (2013), 663-681
- DOI: https://doi.org/10.1090/S1088-4165-2013-00444-2
- Published electronically: December 23, 2013
- PDF | Request permission
Abstract:
Let $G=Sp_{2n}(\mathbb {C})$, and $\mathfrak {N}$ be Kato’s exotic nilpotent cone. Following techniques used by Bezrukavnikov in 2003 to establish a bijection between $\boldsymbol {\Lambda }^+$, the dominant weights for an arbitrary simple algebraic group $H$, and $\textbf {O}$, the set of pairs consisting of a nilpotent orbit and a finite-dimensional irreducible representation of the isotropy group of the orbit, we prove an analogous statement for the exotic nilpotent cone. First we prove that dominant line bundles on the exotic Springer resolution $\widetilde {\mathfrak {N}}$ have vanishing higher cohomology, and compute their global sections using techniques of Broer. This allows us to show that the direct images of these dominant line bundles constitute a quasi-exceptional set generating the category $D^b(\mathrm {Coh}^G(\mathfrak {N}))$, and deduce that the resulting $t$-structure on $D^b(\mathrm {Coh}^G(\mathfrak {N}))$ coincides with the perverse coherent $t$-structure. The desired result now follows from the bijection between costandard objects and simple objects in the heart of the $t$-structure on $D^b(\mathrm {Coh}^G(\mathfrak {N}))$.References
- Pramod Narahari Achar, Equivariant coherent sheaves on the nilpotent cone for complex reductive Lie groups, ProQuest LLC, Ann Arbor, MI, 2001. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2717009
- Pramod N. Achar, On the equivariant $K$-theory of the nilpotent cone in the general linear group, Represent. Theory 8 (2004), 180–211. MR 2058726, DOI 10.1090/S1088-4165-04-00243-2
- Pramod N. Achar and Anthony Henderson, Orbit closures in the enhanced nilpotent cone, Adv. Math. 219 (2008), no. 1, 27–62. MR 2435419, DOI 10.1016/j.aim.2008.04.008
- Pramod N. Achar, Perverse coherent sheaves on the nilpotent cone in good characteristic, Recent developments in Lie algebras, groups and representation theory, Proc. Sympos. Pure Math., vol. 86, Amer. Math. Soc., Providence, RI, 2012, pp. 1–23. MR 2976995, DOI 10.1090/pspum/086/1409
- Pramod N. Achar, Anthony Henderson, and Eric Sommers, Pieces of nilpotent cones for classical groups, Represent. Theory 15 (2011), 584–616. MR 2833469, DOI 10.1090/S1088-4165-2011-00393-9
- Dmitry Arinkin and Roman Bezrukavnikov, Perverse coherent sheaves, Mosc. Math. J. 10 (2010), no. 1, 3–29, 271 (English, with English and Russian summaries). MR 2668828, DOI 10.17323/1609-4514-2010-10-1-3-29
- Roman Bezrukavnikov, Cohomology of tilting modules over quantum groups and $t$-structures on derived categories of coherent sheaves, Invent. Math. 166 (2006), no. 2, 327–357. MR 2249802, DOI 10.1007/s00222-006-0514-z
- R. Bezrukavnikov, Perverse coherent sheaves, after Deligne, math.AG/0005152.
- Roman Bezrukavnikov, Perverse sheaves on affine flags and nilpotent cone of the Langlands dual group, Israel J. Math. 170 (2009), 185–206. MR 2506323, DOI 10.1007/s11856-009-0025-x
- Roman Bezrukavnikov, Quasi-exceptional sets and equivariant coherent sheaves on the nilpotent cone, Represent. Theory 7 (2003), 1–18. MR 1973365, DOI 10.1090/S1088-4165-03-00158-4
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Bram Broer, Line bundles on the cotangent bundle of the flag variety, Invent. Math. 113 (1993), no. 1, 1–20. MR 1223221, DOI 10.1007/BF01244299
- Bram Broer, Normality of some nilpotent varieties and cohomology of line bundles on the cotangent bundle of the flag variety, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 1–19. MR 1327529, DOI 10.1007/978-1-4612-0261-5_{1}
- Ranee Kathryn Brylinski, Limits of weight spaces, Lusztig’s $q$-analogs, and fiberings of adjoint orbits, J. Amer. Math. Soc. 2 (1989), no. 3, 517–533. MR 984511, DOI 10.1090/S0894-0347-1989-0984511-X
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842, DOI 10.1007/978-1-4612-6398-2
- Syu Kato, An exotic Deligne-Langlands correspondence for symplectic groups, Duke Math. J. 148 (2009), no. 2, 305–371. MR 2524498, DOI 10.1215/00127094-2009-028
- S. Kato, An exotic Springer correspondence for symplectic groups, arXiv:math.RT/0607478.
- S. Kato, A homological study of Green polynomials, arXiv:1111.4640v4.
- S. Kato, An algebraic study of extension algebras, arXiv:1207.4640.
- George R. Kempf, On the collapsing of homogeneous bundles, Invent. Math. 37 (1976), no. 3, 229–239. MR 424841, DOI 10.1007/BF01390321
- Viktor Ostrik, On the equivariant $K$-theory of the nilpotent cone, Represent. Theory 4 (2000), 296–305. MR 1773863, DOI 10.1090/S1088-4165-00-00089-3
- Dmitri I. Panyushev, Generalised Kostka-Foulkes polynomials and cohomology of line bundles on homogeneous vector bundles, Selecta Math. (N.S.) 16 (2010), no. 2, 315–342. MR 2679485, DOI 10.1007/s00029-010-0022-2
- B. Parshall, L. Scott, Derived categories, quasi-hereditary algebras, and algebraic groups, preprint, 1987.
- T. Shoji, K. Sorlin, Exotic symmetric space over a finite field, II.
- Michael Sun, Point stabilisers for the enhanced and exotic nilpotent cones, J. Group Theory 14 (2011), no. 6, 825–839. MR 2855780, DOI 10.1515/JGT.2010.080
- Roman Travkin, Mirabolic Robinson-Schensted-Knuth correspondence, Selecta Math. (N.S.) 14 (2009), no. 3-4, 727–758. MR 2511197, DOI 10.1007/s00029-009-0508-y
Bibliographic Information
- Vinoth Nandakumar
- Affiliation: Department of Mathematics, M.I.T., Cambridge, Massachusetts 02139-4307
- Email: vinothn@math.mit.edu
- Received by editor(s): September 13, 2012
- Received by editor(s) in revised form: April 15, 2013, and July 11, 2013
- Published electronically: December 23, 2013
- © Copyright 2013 American Mathematical Society
- Journal: Represent. Theory 17 (2013), 663-681
- MSC (2010): Primary 17B45, 20G05; Secondary 14F05
- DOI: https://doi.org/10.1090/S1088-4165-2013-00444-2
- MathSciNet review: 3145724
Dedicated: In loving memory of my grandfather, Nadaraja Rajamanikkam