Homological approach to the Hernandez-Leclerc construction and quiver varieties
HTML articles powered by AMS MathViewer
- by Giovanni Cerulli Irelli, Evgeny Feigin and Markus Reineke
- Represent. Theory 18 (2014), 1-14
- DOI: https://doi.org/10.1090/S1088-4165-2014-00449-7
- Published electronically: January 13, 2014
- PDF | Request permission
Abstract:
In a previous paper the authors have attached to each Dynkin quiver an associative algebra. The definition is categorical and the algebra is used to construct desingularizations of arbitrary quiver Grassmannians. In the present paper we prove that this algebra is isomorphic to an algebra constructed by Hernandez-Leclerc defined combinatorially and used to describe certain graded Nakajima quiver varieties. This approach is used to get an explicit realization of the orbit closures of representations of Dynkin quivers as affine quotients.References
- S. Abeasis, A. Del Fra, and H. Kraft, The geometry of representations of $A_{m}$, Math. Ann. 256 (1981), no. 3, 401–418. MR 626958, DOI 10.1007/BF01679706
- Ibrahim Assem, Daniel Simson, and Andrzej Skowroński, Elements of the representation theory of associative algebras. Vol. 1, London Mathematical Society Student Texts, vol. 65, Cambridge University Press, Cambridge, 2006. Techniques of representation theory. MR 2197389, DOI 10.1017/CBO9780511614309
- Klaus Bongartz, Algebras and quadratic forms, J. London Math. Soc. (2) 28 (1983), no. 3, 461–469. MR 724715, DOI 10.1112/jlms/s2-28.3.461
- Klaus Bongartz, A geometric version of the Morita equivalence, J. Algebra 139 (1991), no. 1, 159–171. MR 1106345, DOI 10.1016/0021-8693(91)90288-J
- Klaus Bongartz, Minimal singularities for representations of Dynkin quivers, Comment. Math. Helv. 69 (1994), no. 4, 575–611. MR 1303228, DOI 10.1007/BF02564505
- Klaus Bongartz, On degenerations and extensions of finite-dimensional modules, Adv. Math. 121 (1996), no. 2, 245–287. MR 1402728, DOI 10.1006/aima.1996.0053
- Giovanni Cerulli Irelli, Evgeny Feigin, and Markus Reineke, Quiver Grassmannians and degenerate flag varieties, Algebra Number Theory 6 (2012), no. 1, 165–194. MR 2950163, DOI 10.2140/ant.2012.6.165
- G. Cerulli Irelli, E. Feigin, and M. Reineke, Desingularization of quiver Grassmannians for Dynkin quivers, Adv. Math. 245 (2013), 182–207. MR 3084427, DOI 10.1016/j.aim.2013.05.024
- William Crawley-Boevey, Normality of Marsden-Weinstein reductions for representations of quivers, Math. Ann. 325 (2003), no. 1, 55–79. MR 1957264, DOI 10.1007/s00208-002-0367-8
- Evgeny Feigin and Michael Finkelberg, Degenerate flag varieties of type A: Frobenius splitting and BW theorem, Math. Z. 275 (2013), no. 1-2, 55–77. MR 3101796, DOI 10.1007/s00209-012-1122-9
- D. Hernandez, B. Leclerc, Quantum Grothendieck rings and derived Hall algebras, Preprint 2011, arXiv:1109.0862
- A. Kirillov and J. Thind, Coxeter elements and periodic Auslander-Reiten quiver, J. Algebra 323 (2010), no. 5, 1241–1265. MR 2584955, DOI 10.1016/j.jalgebra.2009.11.024
- G. Lusztig, On quiver varieties, Adv. Math. 136 (1998), no. 1, 141–182. MR 1623674, DOI 10.1006/aima.1998.1729
- Lieven Le Bruyn and Claudio Procesi, Semisimple representations of quivers, Trans. Amer. Math. Soc. 317 (1990), no. 2, 585–598. MR 958897, DOI 10.1090/S0002-9947-1990-0958897-0
- B. Leclerc, P. Plamondon, Nakajima varieties and repetitive algebras, Preprint 2012, arXiv:1208.3910
- Claus Michael Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer-Verlag, Berlin, 1984. MR 774589, DOI 10.1007/BFb0072870
Bibliographic Information
- Giovanni Cerulli Irelli
- Affiliation: Mathematisches Institut, Universität Bonn, Bonn, Germany 53115
- Email: cerulli.math@googlemail.com
- Evgeny Feigin
- Affiliation: Department of Mathematics, National Research University Higher School of Economics, Russia, 117312, Moscow, Vavilova str. 7 – and – Tamm Department of Theoretical Physics, Lebedev Physics Institute, Russia
- Email: evgfeig@gmail.com
- Markus Reineke
- Affiliation: Fachbereich C - Mathematik, Bergische Universität Wuppertal, D - 42097 Wuppertal, Germany
- MR Author ID: 622884
- Email: reineke@math.uni-wuppertal.de
- Received by editor(s): March 13, 2013
- Received by editor(s) in revised form: October 17, 2013
- Published electronically: January 13, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Represent. Theory 18 (2014), 1-14
- MSC (2010): Primary 14L30, 14M15, 16G20, 18F99
- DOI: https://doi.org/10.1090/S1088-4165-2014-00449-7
- MathSciNet review: 3149614