On the theta correspondence for $(\mathrm {GSp}(4), \mathrm {GSO}(4,2))$ and Shalika periods
HTML articles powered by AMS MathViewer
- by Kazuki Morimoto
- Represent. Theory 18 (2014), 28-87
- DOI: https://doi.org/10.1090/S1088-4165-2014-00451-5
- Published electronically: April 16, 2014
- PDF | Request permission
Abstract:
We consider both local and global theta correspondences for $\mathrm {GSp}_4$ and $\mathrm {GSO}_{4,2}$. Because of the accidental isomorphism $\mathrm {PGSO}_{4,2} \simeq \mathrm {PGU}_{2,2}$, these correspondences give rise to those between $\mathrm {GSp}_4$ and $\mathrm {GU}_{2,2}$ for representations with trivial central characters. In the global case, using this relation, we characterize representations with trivial central character, which have Shalika period on $\mathrm {GU}(2,2)$ by theta correspondences. Moreover, in the local case, we consider a similar relationship for irreducible admissible representations without an assumption on the central character.References
- Jeffrey D. Adler and Dipendra Prasad, On certain multiplicity one theorems, Israel J. Math. 153 (2006), 221โ245. MR 2254643, DOI 10.1007/BF02771784
- Mahdi Asgari and Freydoon Shahidi, Generic transfer for general spin groups, Duke Math. J. 132 (2006), no.ย 1, 137โ190. MR 2219256, DOI 10.1215/S0012-7094-06-13214-3
- I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. I, Ann. Sci. รcole Norm. Sup. (4) 10 (1977), no.ย 4, 441โ472. MR 579172, DOI 10.24033/asens.1333
- Michel Cognet, Reprรฉsentation de Weil et changement de base quadratique, Bull. Soc. Math. France 113 (1985), no.ย 4, 403โ457 (French, with English summary). MR 850776, DOI 10.24033/bsmf.2041
- Masaaki Furusawa, On the theta lift from $\textrm {SO}_{2n+1}$ to $\widetilde \textrm {Sp}_n$, J. Reine Angew. Math. 466 (1995), 87โ110. MR 1353315, DOI 10.1515/crll.1995.466.87
- Masaaki Furusawa and Kazuki Morimoto, Shalika periods on $\mathrm {GU}(2,2)$, Proc. Amer. Math. Soc. 141 (2013), no.ย 12, 4125โ4137. MR 3105856, DOI 10.1090/S0002-9939-2013-11690-4
- Wee Teck Gan, The Saito-Kurokawa space of $\textrm {PGSp}_4$ and its transfer to inner forms, Eisenstein series and applications, Progr. Math., vol. 258, Birkhรคuser Boston, Boston, MA, 2008, pp.ย 87โ123. MR 2402681, DOI 10.1007/978-0-8176-4639-4_{3}
- Wee Teck Gan and Atsushi Ichino, On endoscopy and the refined Gross-Prasad conjecture for $(\rm SO_5,SO_4)$, J. Inst. Math. Jussieu 10 (2011), no.ย 2, 235โ324. MR 2787690, DOI 10.1017/S1474748010000198
- Wee Teck Gan and Gordan Savin, Real and global lifts from $\rm PGL_3$ to $G_2$, Int. Math. Res. Not. 50 (2003), 2699โ2724. MR 2017248, DOI 10.1155/S1073792803130607
- Wee Teck Gan and Shuichiro Takeda, On Shalika periods and a theorem of Jacquet-Martin, Amer. J. Math. 132 (2010), no.ย 2, 475โ528. MR 2654780, DOI 10.1353/ajm.0.0109
- Wee Teck Gan and Shuichiro Takeda, The local Langlands conjecture for Sp(4), Int. Math. Res. Not. IMRN 15 (2010), 2987โ3038. MR 2673717, DOI 10.1093/imrn/rnp203
- Wee Teck Gan and Shuichiro Takeda, The local Langlands conjecture for $\textrm {GSp}(4)$, Ann. of Math. (2) 173 (2011), no.ย 3, 1841โ1882. MR 2800725, DOI 10.4007/annals.2011.173.3.12
- Wee Teck Gan and Shuichiro Takeda, Theta correspondences for $\textrm {GSp}(4)$, Represent. Theory 15 (2011), 670โ718. MR 2846304, DOI 10.1090/S1088-4165-2011-00405-2
- David Ginzburg, Stephen Rallis, and David Soudry, Periods, poles of $L$-functions and symplectic-orthogonal theta lifts, J. Reine Angew. Math. 487 (1997), 85โ114. MR 1454260, DOI 10.1515/crll.1997.487.85
- Michael Harris and Stephen S. Kudla, Arithmetic automorphic forms for the nonholomorphic discrete series of $\textrm {GSp}(2)$, Duke Math. J. 66 (1992), no.ย 1, 59โ121. MR 1159432, DOI 10.1215/S0012-7094-92-06603-8
- Hervรฉ Jacquet and Joseph Shalika, Exterior square $L$-functions, Automorphic forms, Shimura varieties, and $L$-functions, Vol. II (Ann Arbor, MI, 1988) Perspect. Math., vol. 11, Academic Press, Boston, MA, 1990, pp.ย 143โ226. MR 1044830
- C. David Keys, $L$-indistinguishability and $R$-groups for quasisplit groups: unitary groups in even dimension, Ann. Sci. รcole Norm. Sup. (4) 20 (1987), no.ย 1, 31โ64. MR 892141, DOI 10.24033/asens.1523
- A. W. Knapp and E. M. Stein, Irreducibility theorems for the principal series, Conference on Harmonic Analysis (Univ. Maryland, College Park, Md., 1971), Lecture Notes in Math., Vol. 266, Springer, Berlin, 1972, pp.ย 197โ214. MR 0422512
- Kazuko Konno, Induced representations of $\rm U(2,2)$ over a $p$-adic field, J. Reine Angew. Math. 540 (2001), 167โ204. MR 1868602, DOI 10.1515/crll.2001.083
- Stephen S. Kudla and Stephen Rallis, On first occurrence in the local theta correspondence, Automorphic representations, $L$-functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11, de Gruyter, Berlin, 2005, pp.ย 273โ308. MR 2192827, DOI 10.1515/9783110892703.273
- Stephen S. Kudla, Stephen Rallis, and David Soudry, On the degree $5$ $L$-function for $\textrm {Sp}(2)$, Invent. Math. 107 (1992), no.ย 3, 483โ541. MR 1150600, DOI 10.1007/BF01231900
- Jian-Shu Li, Binyong Sun, and Ye Tian, The multiplicity one conjecture for local theta correspondences, Invent. Math. 184 (2011), no.ย 1, 117โ124. MR 2782253, DOI 10.1007/s00222-010-0287-2
- Zhengyu Mao and Stephen Rallis, Jacquet modules of the Weil representations and families of relative trace identities, Compos. Math. 140 (2004), no.ย 4, 855โ886. MR 2059223, DOI 10.1112/S0010437X04000399
- Nadir Matringe, Distinguished representations and exceptional poles of the Asai-$L$-function, Manuscripta Math. 131 (2010), no.ย 3-4, 415โ426. MR 2592088, DOI 10.1007/s00229-009-0327-7
- Goran Muiฤ, A proof of Casselman-Shahidiโs conjecture for quasi-split classical groups, Canad. Math. Bull. 44 (2001), no.ย 3, 298โ312. MR 1847492, DOI 10.4153/CMB-2001-030-4
- Hiro-aki Narita, Ameya Pitale, and Ralf Schmidt, Irreducibility criteria for local and global representations, Proc. Amer. Math. Soc. 141 (2013), no.ย 1, 55โ63. MR 2988710, DOI 10.1090/S0002-9939-2012-11438-8
- T. Okazaki, $\theta$-correspondence for $\mathrm {PGSp}(4)$ and $\mathrm {PGU}(2,2)$. Automorphic forms, trace formulas and zeta functions, Kyoto 2011, Surikaisekikenkyusho Kokyoroku, 1767(2011) 96โ102.
- Annegret Paul, On the Howe correspondence for symplectic-orthogonal dual pairs, J. Funct. Anal. 228 (2005), no.ย 2, 270โ310. MR 2175409, DOI 10.1016/j.jfa.2005.03.015
- A. Pitale, A. Saha and R. Schmidt, Transfer of Siegel cusp forms of degree 2, to appear in Mem. Amer. Math. Soc.
- Brooks Roberts, The theta correspondence for similitudes, Israel J. Math. 94 (1996), 285โ317. MR 1394579, DOI 10.1007/BF02762709
- Franรงois Rodier, Whittaker models for admissible representations of reductive $p$-adic split groups, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp.ย 425โ430. MR 0354942
- Paul J. Sally Jr. and Marko Tadiฤ, Induced representations and classifications for $\textrm {GSp}(2,F)$ and $\textrm {Sp}(2,F)$, Mรฉm. Soc. Math. France (N.S.) 52 (1993), 75โ133 (English, with English and French summaries). MR 1212952
- Freydoon Shahidi, On certain $L$-functions, Amer. J. Math. 103 (1981), no.ย 2, 297โ355. MR 610479, DOI 10.2307/2374219
- Freydoon Shahidi, A proof of Langlandsโ conjecture on Plancherel measures; complementary series for $p$-adic groups, Ann. of Math. (2) 132 (1990), no.ย 2, 273โ330. MR 1070599, DOI 10.2307/1971524
- J. A. Shalika, The multiplicity one theorem for $\textrm {GL}_{n}$, Ann. of Math. (2) 100 (1974), 171โ193. MR 348047, DOI 10.2307/1971071
- Allan J. Silberger, Introduction to harmonic analysis on reductive $p$-adic groups, Mathematical Notes, vol. 23, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979. Based on lectures by Harish-Chandra at the Institute for Advanced Study, 1971โ1973. MR 544991
- Allan J. Silberger, The Knapp-Stein dimension theorem for $p$-adic groups, Proc. Amer. Math. Soc. 68 (1978), no.ย 2, 243โ246. MR 492091, DOI 10.1090/S0002-9939-1978-0492091-5
- Allan J. Silberger, Correction: โThe Knapp-Stein dimension theorem for $p$-adic groupsโ [Proc. Amer. Math. Soc. 68 (1978), no. 2, 243โ246; MR 58 #11245], Proc. Amer. Math. Soc. 76 (1979), no.ย 1, 169โ170. MR 534411, DOI 10.1090/S0002-9939-1979-0534411-X
- David Soudry, A uniqueness theorem for representations of $\textrm {GSO}(6)$ and the strong multiplicity one theorem for generic representations of $\textrm {GSp}(4)$, Israel J. Math. 58 (1987), no.ย 3, 257โ287. MR 917359, DOI 10.1007/BF02771692
- B. Sun, and C. B. Zhu, Conservation relations for local theta correspondence. preprint
Bibliographic Information
- Kazuki Morimoto
- Affiliation: Department of Mathematics, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Address at time of publication: Department of Mathematics, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
- Email: kazukimorimo@gmail.com
- Received by editor(s): March 11, 2013
- Received by editor(s) in revised form: November 1, 2013
- Published electronically: April 16, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Represent. Theory 18 (2014), 28-87
- MSC (2010): Primary 11F27; Secondary 22E50
- DOI: https://doi.org/10.1090/S1088-4165-2014-00451-5
- MathSciNet review: 3193382