Cyclotomic Carter-Payne homomorphisms
HTML articles powered by AMS MathViewer
- by Sinéad Lyle and Andrew Mathas
- Represent. Theory 18 (2014), 117-154
- DOI: https://doi.org/10.1090/S1088-4165-2014-00450-3
- Published electronically: June 3, 2014
- PDF | Request permission
Abstract:
We construct a new family of homomorphisms between (graded) Specht modules of the quiver Hecke algebras of type $A$. These maps have many similarities with the homomorphisms constructed by Carter and Payne in the special case of the symmetric groups, although the maps that we obtain are both more and less general than these.References
- Susumu Ariki, On the decomposition numbers of the Hecke algebra of $G(m,1,n)$, J. Math. Kyoto Univ. 36 (1996), no. 4, 789–808. MR 1443748, DOI 10.1215/kjm/1250518452
- Susumu Ariki, Andrew Mathas, and Hebing Rui, Cyclotomic Nazarov-Wenzl algebras, Nagoya Math. J. 182 (2006), 47–134. MR 2235339, DOI 10.1017/S0027763000026842
- Michel Broué, Reflection groups, braid groups, Hecke algebras, finite reductive groups, Current developments in mathematics, 2000, Int. Press, Somerville, MA, 2001, pp. 1–107. MR 1882533
- Jonathan Brundan and Alexander Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math. 178 (2009), no. 3, 451–484. MR 2551762, DOI 10.1007/s00222-009-0204-8
- —, Graded decomposition numbers for cyclotomic Hecke algebras, Adv. Math., 222 (2009), 1883–1942. http://dx.doi.org/10.1016/j.aim.2009.06.018
- Jonathan Brundan, Alexander Kleshchev, and Weiqiang Wang, Graded Specht modules, J. Reine Angew. Math. 655 (2011), 61–87. MR 2806105, DOI 10.1515/CRELLE.2011.033
- R. W. Carter and M. T. J. Payne, On homomorphisms between Weyl modules and Specht modules, Math. Proc. Cambridge Philos. Soc. 87 (1980), no. 3, 419–425. MR 556922, DOI 10.1017/S0305004100056851
- K. Corlett, Homomorphisms Between Specht Modules of the Ariki Koike Algebra, 2011, preprint. http://arxiv.org/abs/1108.3672.
- K. Corlett, On homomorphisms between Specht modules For the Ariki-Koike algebras, PhD thesis, University of East Anglia, UK, 2012.
- Richard Dipper, Gordon James, and Andrew Mathas, Cyclotomic $q$-Schur algebras, Math. Z. 229 (1998), no. 3, 385–416. MR 1658581, DOI 10.1007/PL00004665
- J. Dixon, Some results concerning Verma modules, PhD thesis, Queen Mary College, University of London, 2008.
- Craig J. Dodge, Large dimension homomorphism spaces between Specht modules for symmetric groups, J. Pure Appl. Algebra 215 (2011), no. 12, 2949–2956. MR 2811577, DOI 10.1016/j.jpaa.2011.04.015
- Harald Ellers and John Murray, Branching rules for Specht modules, J. Algebra 307 (2007), no. 1, 278–286. MR 2278054, DOI 10.1016/j.jalgebra.2006.07.032
- I. Gordon and I. Losev, On category $\mathcal {O}$ for cyclotomic rational Cherednik algebras, J. Eur. Math. Soc., to appear. http://arxiv.org/abs/1109.2315.
- Jun Hu and Andrew Mathas, Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type $A$, Adv. Math. 225 (2010), no. 2, 598–642. MR 2671176, DOI 10.1016/j.aim.2010.03.002
- —, Seminormal forms and cyclotomic quiver Hecke algebras of type $A$, 2013, preprint. http://arxiv.org/abs/1304.0906.
- V. G. Kac, Infinite dimensional Lie algebras, CUP, Cambridge, third ed., 1994.
- Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of quantum groups. I, Represent. Theory 13 (2009), 309–347. MR 2525917, DOI 10.1090/S1088-4165-09-00346-X
- Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc. 363 (2011), no. 5, 2685–2700. MR 2763732, DOI 10.1090/S0002-9947-2010-05210-9
- Alexander S. Kleshchev, Andrew Mathas, and Arun Ram, Universal graded Specht modules for cyclotomic Hecke algebras, Proc. Lond. Math. Soc. (3) 105 (2012), no. 6, 1245–1289. MR 3004104, DOI 10.1112/plms/pds019
- Sinéad Lyle, Some $q$-analogues of the Carter-Payne theorem, J. Reine Angew. Math. 608 (2007), 93–121. MR 2339470, DOI 10.1515/CRELLE.2007.054
- Sinéad Lyle and Andrew Mathas, Row and column removal theorems for homomorphisms of Specht modules and Weyl modules, J. Algebraic Combin. 22 (2005), no. 2, 151–179. MR 2164395, DOI 10.1007/s10801-005-2511-5
- Sinéad Lyle and Andrew Mathas, Carter-Payne homomorphisms and Jantzen filtrations, J. Algebraic Combin. 32 (2010), no. 3, 417–457. MR 2721060, DOI 10.1007/s10801-010-0222-z
- Andrew Mathas, Iwahori-Hecke algebras and Schur algebras of the symmetric group, University Lecture Series, vol. 15, American Mathematical Society, Providence, RI, 1999. MR 1711316, DOI 10.1090/ulect/015
- R. Rouquier, 2-Kac-Moody algebras, 2008, preprint. http://arxiv.org/abs/0812.5023.
Bibliographic Information
- Sinéad Lyle
- Affiliation: School of Mathematics, University of East Anglia, Norwich NR4 7TJ, United Kingdom
- Email: s.lyle@uea.ac.uk
- Andrew Mathas
- Affiliation: School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
- MR Author ID: 349260
- Email: andrew.mathas@sydney.edu.au
- Received by editor(s): February 18, 2013
- Received by editor(s) in revised form: October 22, 2013
- Published electronically: June 3, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Represent. Theory 18 (2014), 117-154
- MSC (2010): Primary 20C08, 20C30
- DOI: https://doi.org/10.1090/S1088-4165-2014-00450-3
- MathSciNet review: 3213527