Evaluating characteristic functions of character sheaves at unipotent elements
HTML articles powered by AMS MathViewer
- by Jay Taylor
- Represent. Theory 18 (2014), 310-340
- DOI: https://doi.org/10.1090/S1088-4165-2014-00457-6
- Published electronically: October 17, 2014
- PDF | Request permission
Abstract:
Assume $\mathbf {G}$ is a connected reductive algebraic group defined over an algebraic closure $\mathbb {K} = \overline {\mathbb {F}}_p$ of the finite field of prime order $p>0$. Furthermore, assume that $F : \mathbf {G} \to \mathbf {G}$ is a Frobenius endomorphism of $\mathbf {G}$. In this article we give a formula for the value of any $F$-stable character sheaf of $\mathbf {G}$ at a unipotent element. This formula is expressed in terms of class functions of $\mathbf {G}^F$ which are supported on a single unipotent class of $\mathbf {G}$. In general these functions are not determined, however, we give an expression for these functions under the assumption that $Z(\mathbf {G})$ is connected, $\mathbf {G}/Z(\mathbf {G})$ is simple and $p$ is a good prime for $\mathbf {G}$. In this case our formula is completely explicit.References
- Pramod N. Achar and Anne-Marie Aubert, Supports unipotents de faisceaux caractères, J. Inst. Math. Jussieu 6 (2007), no. 2, 173–207 (French, with English and French summaries). MR 2311663, DOI 10.1017/S1474748006000065
- W. M. Beynon and N. Spaltenstein, Green functions of finite Chevalley groups of type $E_{n}$ $(n=6,\,7,\,8)$, J. Algebra 88 (1984), no. 2, 584–614. MR 747534, DOI 10.1016/0021-8693(84)90084-X
- Cédric Bonnafé, Actions of relative Weyl groups. I, J. Group Theory 7 (2004), no. 1, 1–37. MR 2030227, DOI 10.1515/jgth.2003.040
- Cédric Bonnafé, Actions of relative Weyl groups. II, J. Group Theory 8 (2005), no. 3, 351–387. MR 2137975, DOI 10.1515/jgth.2005.8.3.351
- Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication. MR 1266626
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders. MR 632548
- F. Digne, G. Lehrer, and J. Michel, The space of unipotently supported class functions on a finite reductive group, J. Algebra 260 (2003), no. 1, 111–137. Special issue celebrating the 80th birthday of Robert Steinberg. MR 1973579, DOI 10.1016/S0021-8693(02)00635-X
- F. Digne, G. Lehrer, and J. Michel, On character sheaves and characters of reductive groups at unipotent classes, preprint (July 2013), arXiv:1307.0698 [math.RT].
- François Digne and Jean Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991. MR 1118841, DOI 10.1017/CBO9781139172417
- Meinolf Geck and Gunter Malle, On the existence of a unipotent support for the irreducible characters of a finite group of Lie type, Trans. Amer. Math. Soc. 352 (2000), no. 1, 429–456. MR 1475683, DOI 10.1090/S0002-9947-99-02210-2
- Meinolf Geck and Götz Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR 1778802
- R. Hotta and T. A. Springer, A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math. 41 (1977), no. 2, 113–127. MR 486164, DOI 10.1007/BF01418371
- Ryoshi Hotta, On Springer’s representations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 863–876 (1982). MR 656061
- Robert B. Howlett, Normalizers of parabolic subgroups of reflection groups, J. London Math. Soc. (2) 21 (1980), no. 1, 62–80. MR 576184, DOI 10.1112/jlms/s2-21.1.62
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773, DOI 10.1007/978-1-4684-9443-3
- G. Lusztig and N. Spaltenstein, Induced unipotent classes, J. London Math. Soc. (2) 19 (1979), no. 1, 41–52. MR 527733, DOI 10.1112/jlms/s2-19.1.41
- G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), no. 2, 169–178. MR 641425, DOI 10.1016/0001-8708(81)90038-4
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), no. 2, 205–272. MR 732546, DOI 10.1007/BF01388564
- G. Lusztig, Character sheaves. I, Adv. in Math 56 (1985), no. 3, 193-237; Character sheaves. II, Adv. in Math 57 (1985), no. 3, 126-265; Character sheaves. III, Adv. in Math 57 (1985), no. 3, 266-315; Character sheaves. IV, Adv. in Math 59 (1986), no. 1, 1-63; Character sheaves. V, Adv. in Math 61 (1985), no. 2, 103-155.
- George Lusztig, On the character values of finite Chevalley groups at unipotent elements, J. Algebra 104 (1986), no. 1, 146–194. MR 865898, DOI 10.1016/0021-8693(86)90245-0
- George Lusztig, Green functions and character sheaves, Ann. of Math. (2) 131 (1990), no. 2, 355–408. MR 1043271, DOI 10.2307/1971496
- Toshiaki Shoji, On the Green polynomials of a Chevalley group of type $F_{4}$, Comm. Algebra 10 (1982), no. 5, 505–543. MR 647835, DOI 10.1080/00927878208822732
- T. Shoji, On the Green polynomials of classical groups, Invent. Math. 74 (1983), no. 2, 239–267. MR 723216, DOI 10.1007/BF01394315
- Toshiaki Shoji, Green functions of reductive groups over a finite field, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 289–301. MR 933366, DOI 10.1090/pspum/047.1/933366
- Toshiaki Shoji, Geometry of orbits and Springer correspondence, Astérisque 168 (1988), 9, 61–140. Orbites unipotentes et représentations, I. MR 1021493
- Toshiaki Shoji, Character sheaves and almost characters of reductive groups. I, II, Adv. Math. 111 (1995), no. 2, 244–313, 314–354. MR 1318530, DOI 10.1006/aima.1995.1024
- Toshiaki Shoji, Unipotent characters of finite classical groups, Finite reductive groups (Luminy, 1994) Progr. Math., vol. 141, Birkhäuser Boston, Boston, MA, 1997, pp. 373–413. MR 1429881
- Toshiaki Shoji, Generalized Green functions and unipotent classes for finite reductive groups. I, Nagoya Math. J. 184 (2006), 155–198. MR 2285233, DOI 10.1017/S0027763000009338
- Toshiaki Shoji, Generalized Green functions and unipotent classes for finite reductive groups. II, Nagoya Math. J. 188 (2007), 133–170. MR 2371771, DOI 10.1017/S0027763000009478
- Nicolas Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, Berlin-New York, 1982 (French). MR 672610, DOI 10.1007/BFb0096302
- T. A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), no. 3, 279–293. MR 491988, DOI 10.1007/BF01403165
- Robert Steinberg, The isomorphism and isogeny theorems for reductive algebraic groups, J. Algebra 216 (1999), no. 1, 366–383. MR 1694546, DOI 10.1006/jabr.1998.7776
- J. Taylor, Multiplicities in GGGRs for classical-type groups with connected centre I, preprint (June 2013), arXiv:1306.5882 [math.RT].
- Jay Taylor, On unipotent supports of reductive groups with a disconnected centre, J. Algebra 391 (2013), 41–61. MR 3081621, DOI 10.1016/j.jalgebra.2013.06.004
- Jean-Loup Waldspurger, Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés, Astérisque 269 (2001), vi+449 (French, with English and French summaries). MR 1817880, DOI 10.1016/0001-8708(85)90034-9
Bibliographic Information
- Jay Taylor
- Affiliation: FB Mathematik, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
- MR Author ID: 1029591
- ORCID: 0000-0002-9143-6605
- Email: taylor@mathematik.uni-kl.de
- Received by editor(s): February 5, 2014
- Received by editor(s) in revised form: September 12, 2014
- Published electronically: October 17, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Represent. Theory 18 (2014), 310-340
- MSC (2010): Primary 20C33; Secondary 20G40
- DOI: https://doi.org/10.1090/S1088-4165-2014-00457-6
- MathSciNet review: 3269461