Evaluating characteristic functions of character sheaves at unipotent elements
HTML articles powered by AMS MathViewer
- by Jay Taylor PDF
- Represent. Theory 18 (2014), 310-340 Request permission
Abstract:
Assume $\mathbf {G}$ is a connected reductive algebraic group defined over an algebraic closure $\mathbb {K} = \overline {\mathbb {F}}_p$ of the finite field of prime order $p>0$. Furthermore, assume that $F : \mathbf {G} \to \mathbf {G}$ is a Frobenius endomorphism of $\mathbf {G}$. In this article we give a formula for the value of any $F$-stable character sheaf of $\mathbf {G}$ at a unipotent element. This formula is expressed in terms of class functions of $\mathbf {G}^F$ which are supported on a single unipotent class of $\mathbf {G}$. In general these functions are not determined, however, we give an expression for these functions under the assumption that $Z(\mathbf {G})$ is connected, $\mathbf {G}/Z(\mathbf {G})$ is simple and $p$ is a good prime for $\mathbf {G}$. In this case our formula is completely explicit.References
- Pramod N. Achar and Anne-Marie Aubert, Supports unipotents de faisceaux caractères, J. Inst. Math. Jussieu 6 (2007), no. 2, 173–207 (French, with English and French summaries). MR 2311663, DOI 10.1017/S1474748006000065
- W. M. Beynon and N. Spaltenstein, Green functions of finite Chevalley groups of type $E_{n}$ $(n=6,\,7,\,8)$, J. Algebra 88 (1984), no. 2, 584–614. MR 747534, DOI 10.1016/0021-8693(84)90084-X
- Cédric Bonnafé, Actions of relative Weyl groups. I, J. Group Theory 7 (2004), no. 1, 1–37. MR 2030227, DOI 10.1515/jgth.2003.040
- Cédric Bonnafé, Actions of relative Weyl groups. II, J. Group Theory 8 (2005), no. 3, 351–387. MR 2137975, DOI 10.1515/jgth.2005.8.3.351
- Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication. MR 1266626
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders. MR 632548
- F. Digne, G. Lehrer, and J. Michel, The space of unipotently supported class functions on a finite reductive group, J. Algebra 260 (2003), no. 1, 111–137. Special issue celebrating the 80th birthday of Robert Steinberg. MR 1973579, DOI 10.1016/S0021-8693(02)00635-X
- F. Digne, G. Lehrer, and J. Michel, On character sheaves and characters of reductive groups at unipotent classes, preprint (July 2013), arXiv:1307.0698 [math.RT].
- François Digne and Jean Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991. MR 1118841, DOI 10.1017/CBO9781139172417
- Meinolf Geck and Gunter Malle, On the existence of a unipotent support for the irreducible characters of a finite group of Lie type, Trans. Amer. Math. Soc. 352 (2000), no. 1, 429–456. MR 1475683, DOI 10.1090/S0002-9947-99-02210-2
- Meinolf Geck and Götz Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR 1778802
- R. Hotta and T. A. Springer, A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math. 41 (1977), no. 2, 113–127. MR 486164, DOI 10.1007/BF01418371
- Ryoshi Hotta, On Springer’s representations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 863–876 (1982). MR 656061
- Robert B. Howlett, Normalizers of parabolic subgroups of reflection groups, J. London Math. Soc. (2) 21 (1980), no. 1, 62–80. MR 576184, DOI 10.1112/jlms/s2-21.1.62
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773, DOI 10.1007/978-1-4684-9443-3
- G. Lusztig and N. Spaltenstein, Induced unipotent classes, J. London Math. Soc. (2) 19 (1979), no. 1, 41–52. MR 527733, DOI 10.1112/jlms/s2-19.1.41
- G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), no. 2, 169–178. MR 641425, DOI 10.1016/0001-8708(81)90038-4
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), no. 2, 205–272. MR 732546, DOI 10.1007/BF01388564
- G. Lusztig, Character sheaves. I, Adv. in Math 56 (1985), no. 3, 193-237; Character sheaves. II, Adv. in Math 57 (1985), no. 3, 126-265; Character sheaves. III, Adv. in Math 57 (1985), no. 3, 266-315; Character sheaves. IV, Adv. in Math 59 (1986), no. 1, 1-63; Character sheaves. V, Adv. in Math 61 (1985), no. 2, 103-155.
- George Lusztig, On the character values of finite Chevalley groups at unipotent elements, J. Algebra 104 (1986), no. 1, 146–194. MR 865898, DOI 10.1016/0021-8693(86)90245-0
- George Lusztig, Green functions and character sheaves, Ann. of Math. (2) 131 (1990), no. 2, 355–408. MR 1043271, DOI 10.2307/1971496
- Toshiaki Shoji, On the Green polynomials of a Chevalley group of type $F_{4}$, Comm. Algebra 10 (1982), no. 5, 505–543. MR 647835, DOI 10.1080/00927878208822732
- T. Shoji, On the Green polynomials of classical groups, Invent. Math. 74 (1983), no. 2, 239–267. MR 723216, DOI 10.1007/BF01394315
- Toshiaki Shoji, Green functions of reductive groups over a finite field, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 289–301. MR 933366
- Toshiaki Shoji, Geometry of orbits and Springer correspondence, Astérisque 168 (1988), 9, 61–140. Orbites unipotentes et représentations, I. MR 1021493
- Toshiaki Shoji, Character sheaves and almost characters of reductive groups. I, II, Adv. Math. 111 (1995), no. 2, 244–313, 314–354. MR 1318530, DOI 10.1006/aima.1995.1024
- Toshiaki Shoji, Unipotent characters of finite classical groups, Finite reductive groups (Luminy, 1994) Progr. Math., vol. 141, Birkhäuser Boston, Boston, MA, 1997, pp. 373–413. MR 1429881
- Toshiaki Shoji, Generalized Green functions and unipotent classes for finite reductive groups. I, Nagoya Math. J. 184 (2006), 155–198. MR 2285233, DOI 10.1017/S0027763000009338
- Toshiaki Shoji, Generalized Green functions and unipotent classes for finite reductive groups. II, Nagoya Math. J. 188 (2007), 133–170. MR 2371771, DOI 10.1017/S0027763000009478
- Nicolas Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, Berlin-New York, 1982 (French). MR 672610, DOI 10.1007/BFb0096302
- T. A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), no. 3, 279–293. MR 491988, DOI 10.1007/BF01403165
- Robert Steinberg, The isomorphism and isogeny theorems for reductive algebraic groups, J. Algebra 216 (1999), no. 1, 366–383. MR 1694546, DOI 10.1006/jabr.1998.7776
- J. Taylor, Multiplicities in GGGRs for classical-type groups with connected centre I, preprint (June 2013), arXiv:1306.5882 [math.RT].
- Jay Taylor, On unipotent supports of reductive groups with a disconnected centre, J. Algebra 391 (2013), 41–61. MR 3081621, DOI 10.1016/j.jalgebra.2013.06.004
- Jean-Loup Waldspurger, Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés, Astérisque 269 (2001), vi+449 (French, with English and French summaries). MR 1817880, DOI 10.1016/0001-8708(85)90034-9
Additional Information
- Jay Taylor
- Affiliation: FB Mathematik, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
- MR Author ID: 1029591
- ORCID: 0000-0002-9143-6605
- Email: taylor@mathematik.uni-kl.de
- Received by editor(s): February 5, 2014
- Received by editor(s) in revised form: September 12, 2014
- Published electronically: October 17, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Represent. Theory 18 (2014), 310-340
- MSC (2010): Primary 20C33; Secondary 20G40
- DOI: https://doi.org/10.1090/S1088-4165-2014-00457-6
- MathSciNet review: 3269461