## Evaluating characteristic functions of character sheaves at unipotent elements

HTML articles powered by AMS MathViewer

- by Jay Taylor
- Represent. Theory
**18**(2014), 310-340 - DOI: https://doi.org/10.1090/S1088-4165-2014-00457-6
- Published electronically: October 17, 2014
- PDF | Request permission

## Abstract:

Assume $\mathbf {G}$ is a connected reductive algebraic group defined over an algebraic closure $\mathbb {K} = \overline {\mathbb {F}}_p$ of the finite field of prime order $p>0$. Furthermore, assume that $F : \mathbf {G} \to \mathbf {G}$ is a Frobenius endomorphism of $\mathbf {G}$. In this article we give a formula for the value of any $F$-stable character sheaf of $\mathbf {G}$ at a unipotent element. This formula is expressed in terms of class functions of $\mathbf {G}^F$ which are supported on a single unipotent class of $\mathbf {G}$. In general these functions are not determined, however, we give an expression for these functions under the assumption that $Z(\mathbf {G})$ is connected, $\mathbf {G}/Z(\mathbf {G})$ is simple and $p$ is a good prime for $\mathbf {G}$. In this case our formula is completely explicit.## References

- Pramod N. Achar and Anne-Marie Aubert,
*Supports unipotents de faisceaux caractères*, J. Inst. Math. Jussieu**6**(2007), no. 2, 173–207 (French, with English and French summaries). MR**2311663**, DOI 10.1017/S1474748006000065 - W. M. Beynon and N. Spaltenstein,
*Green functions of finite Chevalley groups of type $E_{n}$ $(n=6,\,7,\,8)$*, J. Algebra**88**(1984), no. 2, 584–614. MR**747534**, DOI 10.1016/0021-8693(84)90084-X - Cédric Bonnafé,
*Actions of relative Weyl groups. I*, J. Group Theory**7**(2004), no. 1, 1–37. MR**2030227**, DOI 10.1515/jgth.2003.040 - Cédric Bonnafé,
*Actions of relative Weyl groups. II*, J. Group Theory**8**(2005), no. 3, 351–387. MR**2137975**, DOI 10.1515/jgth.2005.8.3.351 - Roger W. Carter,
*Finite groups of Lie type*, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication. MR**1266626** - Charles W. Curtis and Irving Reiner,
*Methods of representation theory. Vol. I*, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders. MR**632548** - F. Digne, G. Lehrer, and J. Michel,
*The space of unipotently supported class functions on a finite reductive group*, J. Algebra**260**(2003), no. 1, 111–137. Special issue celebrating the 80th birthday of Robert Steinberg. MR**1973579**, DOI 10.1016/S0021-8693(02)00635-X - F. Digne, G. Lehrer, and J. Michel,
*On character sheaves and characters of reductive groups at unipotent classes*, preprint (July 2013), arXiv:1307.0698 [math.RT]. - François Digne and Jean Michel,
*Representations of finite groups of Lie type*, London Mathematical Society Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991. MR**1118841**, DOI 10.1017/CBO9781139172417 - Meinolf Geck and Gunter Malle,
*On the existence of a unipotent support for the irreducible characters of a finite group of Lie type*, Trans. Amer. Math. Soc.**352**(2000), no. 1, 429–456. MR**1475683**, DOI 10.1090/S0002-9947-99-02210-2 - Meinolf Geck and Götz Pfeiffer,
*Characters of finite Coxeter groups and Iwahori-Hecke algebras*, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR**1778802** - R. Hotta and T. A. Springer,
*A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups*, Invent. Math.**41**(1977), no. 2, 113–127. MR**486164**, DOI 10.1007/BF01418371 - Ryoshi Hotta,
*On Springer’s representations*, J. Fac. Sci. Univ. Tokyo Sect. IA Math.**28**(1981), no. 3, 863–876 (1982). MR**656061** - Robert B. Howlett,
*Normalizers of parabolic subgroups of reflection groups*, J. London Math. Soc. (2)**21**(1980), no. 1, 62–80. MR**576184**, DOI 10.1112/jlms/s2-21.1.62 - James E. Humphreys,
*Linear algebraic groups*, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR**0396773**, DOI 10.1007/978-1-4684-9443-3 - G. Lusztig and N. Spaltenstein,
*Induced unipotent classes*, J. London Math. Soc. (2)**19**(1979), no. 1, 41–52. MR**527733**, DOI 10.1112/jlms/s2-19.1.41 - G. Lusztig,
*Green polynomials and singularities of unipotent classes*, Adv. in Math.**42**(1981), no. 2, 169–178. MR**641425**, DOI 10.1016/0001-8708(81)90038-4 - George Lusztig,
*Characters of reductive groups over a finite field*, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR**742472**, DOI 10.1515/9781400881772 - G. Lusztig,
*Intersection cohomology complexes on a reductive group*, Invent. Math.**75**(1984), no. 2, 205–272. MR**732546**, DOI 10.1007/BF01388564 - G. Lusztig,
*Character sheaves. I*, Adv. in Math**56**(1985), no. 3, 193-237;*Character sheaves. II*, Adv. in Math**57**(1985), no. 3, 126-265;*Character sheaves. III*, Adv. in Math**57**(1985), no. 3, 266-315;*Character sheaves. IV*, Adv. in Math**59**(1986), no. 1, 1-63;*Character sheaves. V*, Adv. in Math**61**(1985), no. 2, 103-155. - George Lusztig,
*On the character values of finite Chevalley groups at unipotent elements*, J. Algebra**104**(1986), no. 1, 146–194. MR**865898**, DOI 10.1016/0021-8693(86)90245-0 - George Lusztig,
*Green functions and character sheaves*, Ann. of Math. (2)**131**(1990), no. 2, 355–408. MR**1043271**, DOI 10.2307/1971496 - Toshiaki Shoji,
*On the Green polynomials of a Chevalley group of type $F_{4}$*, Comm. Algebra**10**(1982), no. 5, 505–543. MR**647835**, DOI 10.1080/00927878208822732 - T. Shoji,
*On the Green polynomials of classical groups*, Invent. Math.**74**(1983), no. 2, 239–267. MR**723216**, DOI 10.1007/BF01394315 - Toshiaki Shoji,
*Green functions of reductive groups over a finite field*, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 289–301. MR**933366**, DOI 10.1090/pspum/047.1/933366 - Toshiaki Shoji,
*Geometry of orbits and Springer correspondence*, Astérisque**168**(1988), 9, 61–140. Orbites unipotentes et représentations, I. MR**1021493** - Toshiaki Shoji,
*Character sheaves and almost characters of reductive groups. I, II*, Adv. Math.**111**(1995), no. 2, 244–313, 314–354. MR**1318530**, DOI 10.1006/aima.1995.1024 - Toshiaki Shoji,
*Unipotent characters of finite classical groups*, Finite reductive groups (Luminy, 1994) Progr. Math., vol. 141, Birkhäuser Boston, Boston, MA, 1997, pp. 373–413. MR**1429881** - Toshiaki Shoji,
*Generalized Green functions and unipotent classes for finite reductive groups. I*, Nagoya Math. J.**184**(2006), 155–198. MR**2285233**, DOI 10.1017/S0027763000009338 - Toshiaki Shoji,
*Generalized Green functions and unipotent classes for finite reductive groups. II*, Nagoya Math. J.**188**(2007), 133–170. MR**2371771**, DOI 10.1017/S0027763000009478 - Nicolas Spaltenstein,
*Classes unipotentes et sous-groupes de Borel*, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, Berlin-New York, 1982 (French). MR**672610**, DOI 10.1007/BFb0096302 - T. A. Springer,
*A construction of representations of Weyl groups*, Invent. Math.**44**(1978), no. 3, 279–293. MR**491988**, DOI 10.1007/BF01403165 - Robert Steinberg,
*The isomorphism and isogeny theorems for reductive algebraic groups*, J. Algebra**216**(1999), no. 1, 366–383. MR**1694546**, DOI 10.1006/jabr.1998.7776 - J. Taylor,
*Multiplicities in GGGRs for classical-type groups with connected centre I*, preprint (June 2013), arXiv:1306.5882 [math.RT]. - Jay Taylor,
*On unipotent supports of reductive groups with a disconnected centre*, J. Algebra**391**(2013), 41–61. MR**3081621**, DOI 10.1016/j.jalgebra.2013.06.004 - Jean-Loup Waldspurger,
*Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés*, Astérisque**269**(2001), vi+449 (French, with English and French summaries). MR**1817880**, DOI 10.1016/0001-8708(85)90034-9

## Bibliographic Information

**Jay Taylor**- Affiliation: FB Mathematik, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
- MR Author ID: 1029591
- ORCID: 0000-0002-9143-6605
- Email: taylor@mathematik.uni-kl.de
- Received by editor(s): February 5, 2014
- Received by editor(s) in revised form: September 12, 2014
- Published electronically: October 17, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Represent. Theory
**18**(2014), 310-340 - MSC (2010): Primary 20C33; Secondary 20G40
- DOI: https://doi.org/10.1090/S1088-4165-2014-00457-6
- MathSciNet review: 3269461