## On representations of rational Cherednik algebras of complex rank

HTML articles powered by AMS MathViewer

- by Inna Entova Aizenbud
- Represent. Theory
**18**(2014), 361-407 - DOI: https://doi.org/10.1090/S1088-4165-2014-00459-X
- Published electronically: November 24, 2014
- PDF | Request permission

## Abstract:

We study a family of abelian categories $\underline {\mathcal {O}}_{\text { } c,\nu }$ depending on complex parameters $c, \nu$ which are interpolations of the category $\mathcal {O}$ for the rational Cherednik algebra $H_c(\nu )$ of type $A$, where $\nu$ is a positive integer. We define the notion of a Verma object in such a category (a natural analogue of the notion of Verma module).

We give some necessary conditions and some sufficient conditions for the existence of a non-trivial morphism between two such Verma objects. We also compute the character of the irreducible quotient of a Verma object for sufficiently generic values of parameters $c, \nu$, and prove that a Verma object of infinite length exists in $\mathcal {O}_{\text { } c,\nu }$ only if $c \in \mathbb {Q}_{<0}$. We also show that for every $c \in \mathbb {Q}_{<0}$ there exists $\nu \in \mathbb {Q}_{<0}$ such that there exists a Verma object of infinite length in $\mathcal {O}_{\text { } c,\nu }$.

The latter result is an example of a degeneration phenomenon which can occur in rational values of $\nu$, as was conjectured by P. Etingof.

## References

- Roman Bezrukavnikov and Pavel Etingof,
*Parabolic induction and restriction functors for rational Cherednik algebras*, Selecta Math. (N.S.)**14**(2009), no. 3-4, 397–425. MR**2511190**, DOI 10.1007/s00029-009-0507-z - Yuri Berest, Pavel Etingof, and Victor Ginzburg,
*Cherednik algebras and differential operators on quasi-invariants*, Duke Math. J.**118**(2003), no. 2, 279–337. MR**1980996**, DOI 10.1215/S0012-7094-03-11824-4 - Yuri Berest, Pavel Etingof, and Victor Ginzburg,
*Finite-dimensional representations of rational Cherednik algebras*, Int. Math. Res. Not.**19**(2003), 1053–1088. MR**1961261**, DOI 10.1155/S1073792803210205 - Emmanuel Briand, Rosa Orellana, and Mercedes Rosas,
*The stability of the Kronecker product of Schur functions*, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), Discrete Math. Theor. Comput. Sci. Proc., AN, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2010, pp. 557–567 (English, with English, French and Spanish summaries). MR**2673866** - Jonathan Comes and Victor Ostrik,
*On blocks of Deligne’s category $\underline \textrm {Re}\textrm {p}(S_t)$*, Adv. Math.**226**(2011), no. 2, 1331–1377. MR**2737787**, DOI 10.1016/j.aim.2010.08.010 - P. Deligne,
*La catégorie des représentations du groupe symétrique $S_t$, lorsque $t$ n’est pas un entier naturel*, Algebraic groups and homogeneous spaces, Tata Inst. Fund. Res. Stud. Math., vol. 19, Tata Inst. Fund. Res., Mumbai, 2007, pp. 209–273 (French, with English and French summaries). MR**2348906** - Richard Dipper and Gordon James,
*Blocks and idempotents of Hecke algebras of general linear groups*, Proc. London Math. Soc. (3)**54**(1987), no. 1, 57–82. MR**872250**, DOI 10.1112/plms/s3-54.1.57 - Karin Erdmann and Daniel K. Nakano,
*Representation type of Hecke algebras of type $A$*, Trans. Amer. Math. Soc.**354**(2002), no. 1, 275–285. MR**1859276**, DOI 10.1090/S0002-9947-01-02848-3 - Pavel Etingof,
*Representation theory in complex rank, I*, Transform. Groups**19**(2014), no. 2, 359–381. MR**3200430**, DOI 10.1007/s00031-014-9260-2 - P. Etingof, X. Ma,
*Lecture notes on Cherednik algebras*; arXiv:1001.0432v4 [math.RT]. - Pavel Etingof and Emanuel Stoica,
*Unitary representations of rational Cherednik algebras*, Represent. Theory**13**(2009), 349–370. With an appendix by Stephen Griffeth. MR**2534594**, DOI 10.1090/S1088-4165-09-00356-2 - William Fulton and Joe Harris,
*Representation theory*, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR**1153249**, DOI 10.1007/978-1-4612-0979-9 - Victor Ginzburg, Nicolas Guay, Eric Opdam, and Raphaël Rouquier,
*On the category $\scr O$ for rational Cherednik algebras*, Invent. Math.**154**(2003), no. 3, 617–651. MR**2018786**, DOI 10.1007/s00222-003-0313-8 - Eugene Gorsky, Alexei Oblomkov, Jacob Rasmussen, and Vivek Shende,
*Torus knots and the rational DAHA*, Duke Math. J.**163**(2014), no. 14, 2709–2794. MR**3273582**, DOI 10.1215/00127094-2827126 - I. Gordon and J. T. Stafford,
*Rational Cherednik algebras and Hilbert schemes*, Adv. Math.**198**(2005), no. 1, 222–274. MR**2183255**, DOI 10.1016/j.aim.2004.12.005 - Friedrich Knop,
*A construction of semisimple tensor categories*, C. R. Math. Acad. Sci. Paris**343**(2006), no. 1, 15–18 (English, with English and French summaries). MR**2241951**, DOI 10.1016/j.crma.2006.05.009 - I. Losev,
*Towards multiplicities for categories O of cyclotomic rational Cherednik algebras*, arXiv:1207.1299v2 [math.RT]. - I. G. Macdonald,
*Symmetric functions and Hall polynomials*, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR**1354144** - Andrew Mathas,
*Iwahori-Hecke algebras and Schur algebras of the symmetric group*, University Lecture Series, vol. 15, American Mathematical Society, Providence, RI, 1999. MR**1711316**, DOI 10.1090/ulect/015 - Akhil Mathew,
*Categories parametrized by schemes and representation theory in complex rank*, J. Algebra**381**(2013), 140–163. MR**3030515**, DOI 10.1016/j.jalgebra.2013.01.029 - Raphaël Rouquier,
*$q$-Schur algebras and complex reflection groups*, Mosc. Math. J.**8**(2008), no. 1, 119–158, 184 (English, with English and Russian summaries). MR**2422270**, DOI 10.17323/1609-4514-2008-8-1-119-158 - Raphaël Rouquier,
*Representations of rational Cherednik algebras*, Infinite-dimensional aspects of representation theory and applications, Contemp. Math., vol. 392, Amer. Math. Soc., Providence, RI, 2005, pp. 103–131. MR**2189874**, DOI 10.1090/conm/392/07357

## Bibliographic Information

**Inna Entova Aizenbud**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Email: inna.entova@gmail.com
- Received by editor(s): March 17, 2014
- Received by editor(s) in revised form: June 14, 2014, and September 17, 2014
- Published electronically: November 24, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Represent. Theory
**18**(2014), 361-407 - MSC (2010): Primary 16S99, and, 18D10
- DOI: https://doi.org/10.1090/S1088-4165-2014-00459-X
- MathSciNet review: 3280664