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HECKE MODULES AND SUPERSINGULAR

REPRESENTATIONS OF U(2,1)

KAROL KOZIO�L AND PENG XU

Abstract. Let F be a nonarchimedean local field of odd residual charac-
teristic p. We classify finite-dimensional simple right modules for the pro-p-
Iwahori-Hecke algebra HC(G, I(1)), where G is the unramified unitary group

U(2, 1)(E/F ) in three variables. Using this description when C = Fp, we define

supersingular Hecke modules and show that the functor of I(1)-invariants in-
duces a bijection between irreducible nonsupersingular mod-p representations
of G and nonsupersingular simple right HC(G, I(1))-modules. We then use an
argument of Paškūnas to construct supersingular representations of G.

1. Introduction

This article is set in the framework of the mod-p representation theory of p-adic
reductive groups. Our motivation comes from the possibility of a mod-p Local
Langlands Correspondence, that is to say a matching between (packets of) smooth
mod-p representations of a p-adic reductive group and certain Galois representa-
tions. The case of GL2(Qp) has been most extensively studied, and a (semisimple)
mod-p Local Langlands Correspondence has been established by Breuil ([9]) based
on the explicit determination of the irreducible smooth mod-p representations of
GL2(Qp). Moreover, this correspondence is compatible with the p-adic Local Lang-
lands Correspondence established by the work of several mathematicians; see [10],
[11], [15], [18], [24], [25], [28], and the references therein. The case of GL2(F ) with
F �= Qp is already much more complicated, however (see [12]).

In the present article, we investigate the smooth mod-p representations of the
unitary group G = U(2, 1)(E/F ), where E/F is an unramified quadratic extension
of nonarchimedean local fields of residual characteristic p. The irreducible subquo-
tients of parabolically induced representations have been classified by Abdellatif
([3]). We are interested in the smooth irreducible representations that do not ap-
pear in this fashion, which we call supersingular representations (we will comment
on this terminology at the end of this introduction). These representations are
the ones which are expected to play a crucial role in a potential Local Langlands
Correspondence. We now describe the ingredients in our method for constructing
such representations, inspired by the work of Vignéras and Paškūnas.

Let I(1) be the unique pro-p-Sylow subgroup of the standard Iwahori subgroup
I of G, and let C denote an algebraically closed field. The pro-p-Iwahori-Hecke
algebra HC(G, I(1)) is the convolution algebra of compactly supported, C-valued
functions on the double coset space I(1)\G/I(1). Under a mild assumption on the
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characteristic of C, we determine explicitly the structure of the algebra HC(G, I(1))
and describe its center. This allows us to classify all simple finite-dimensional right
modules of HC(G, I(1)) for any field C satisfying Assumption 3.3 (see Section 3).
We remark that some of the results of this section have been subsumed under recent
work of Vignéras ([35], [36], [37]) and Abe ([4]).

The motivation for considering modules of the algebra HC(G, I(1)) comes from
the following observation. Attaching to a smooth representation π of G its space
of I(1)-invariants πI(1) yields a functor with values in the category of HC(G, I(1))-
modules. If C is of characteristic p, then πI(1) is nonzero provided π is nonzero; this
suggests that the functor of I(1)-invariants is likely to give information about rep-
resentations generated by their I(1)-invariants (though in general, we don’t expect
an equivalence of categories (cf. [26])).

Using our explicit description of finite-dimensional simple HFp
(G, I(1))-modules,

we establish a bijection between irreducible smooth nonsupersingular representa-
tions of G and certain simple modules (Corollary 4.4). In particular, we show that
the simple HFp

(G, I(1))-modules not arising in this fashion are precisely those with

a “zero” central character, and we call these modules supersingular. Our goal is to
attach an irreducible smooth supersingular representation of G to every supersingu-
lar HFp

(G, I(1))-module. The tool we will use is (homological) coefficient systems

on the semisimple Bruhat-Tits building X of G.
In [29], Schneider and Stuhler introduced coefficient systems on the Bruhat-Tits

building and used them to study complex representations of p-adic reductive groups.
Coefficient systems were later used in the mod-p setting by Paškūnas to construct
supersingular representations of GL2(F ). The use of coefficient systems in this
context has proved extremely useful (cf. [27]), but so far has only been considered
for the group GL2(F ). We adapt this method to representations of U(2, 1)(E/F ),
and define an analog of Paškūnas’ category of diagrams, which is easier to handle
than (but equivalent to) the category of coefficient systems.

Next, we attach to every supersingular module M a diagram DM . The 0-
homology of the corresponding coefficient system DM is naturally a smooth G-
representation, and we show that any of its nonzero irreducible quotients contain
an HFp

(G, I(1))-module isomorphic to M . This implies that any such quotient is

a supersingular representation of G (Corollary 4.4).
To produce such quotients, we next specialize to the case when the residue field

of F has size p. In this setting we are able to construct explicitly an auxiliary
coefficient system EM (built out of injective envelopes of representations of finite
reductive groups Γ and Γ′ attached to G) along with a morphism DM → EM . This
morphism induces a map on the 0-homology of the coefficient systems, and we
consider the representation afforded by the image

πEM
= im(H0(X,DM ) → H0(X, EM )).

The result here is the following:

Theorem (Corollary 7.7). Assume the residue field of F has size p. The repre-
sentation πEM

is nonzero, irreducible, admissible, and supersingular. For noniso-
morphic supersingular HFp

(G, I(1))-modules M,M ′, the representations πEM
, πEM′

are nonisomorphic.

We remark that while DM is uniquely determined, the choice of the coefficient
system EM is in general not unique. Therefore, to every supersingular module M
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we attach at least one supersingular representation; in this way, we construct at
least p2(p+ 1) supersingular representations of G.

It is interesting to compare this result to Serre weight conjectures, which give
information about the K-socles of irreducible representations of G, where K is
the hyperspecial maximal compact subgroup. Forthcoming work of Emerton–
Gee–Herzig–Savitt ([19]) shows that a supersingular representation associated to
a “generic” Galois parameter (with values in the L-group of G) should have a K-
socle of length 9. This suggests that the supersingular representations constructed
above (which have a simple K-socle) are in some sense not compatible with Serre’s
conjecture, and might not participate in a potential mod-p Local Langlands Corre-
spondence. Though we do not address this question in the present article, it would
be quite interesting to see if one could generalize the methods of [12] and construct
supersingular representations with K-socles predicted by [19]. We hope to return
to this in future work.

We next address the shortcomings of our method when the residue field of F
has size greater than p. As mentioned before, our method relies on the comparison
of injective envelopes for representations of the finite groups Γ and Γ′. When the
residue field of F is larger than Fp, we demonstrate cases where the construction
of Section 7 would produce a coefficient system EM which is “too big”, in the sense
that we cannot guarantee irreducibility of the resulting representation. Our main
tool will be Dordowsky’s Diplomarbeit ([17]), in which the dimensions of injective
envelopes of representations of Γ are computed.

To conclude, we draw some comparisons between our results and the analogous
results for the group SL2(F ), based on results of Abdellatif in [1]. The action of
SL2(F ) on its Bruhat-Tits tree XS partitions the set of vertices into two disjoint
orbits and acts transitively on the edges, and therefore the results of Section 6 (for
U(2, 1)(E/F )) carry over formally to SL2(F ). When the residue field of F is Fp,
we attach to every supersingular HFp

(SL2(F ), IS(1))-module MS two coefficient

systems DMS
and EMS

. There is one striking difference between this case and the
case of U(2, 1)(E/F ), however: when the residue field of F has size p, there is a
natural choice of auxiliary diagram EMS

.

Theorem (Theorems 8.4 and 8.5). Assume the residue field of F has size p.
For each of the p nonisomorphic supersingular HFp

(SL2(F ), IS(1))-modules MS

there is a pair of associated coefficient systems (DMS
, EMS

). The resulting SL2(F )-
representation afforded by

πMS
= im(H0(XS,DMS

) → H0(XS, EMS
))

is nonzero, irreducible, admissible, and supersingular. For nonisomorphic
HFp

(SL2(F ), IS(1))-modules MS ,M
′
S , the representations πMS

, πM ′
S

are noniso-

morphic. In particular, when F = Qp, we recover in this way all p nonisomorphic
supersingular representations of SL2(Qp) as classified in [1].

Remark on terminology. We briefly address our choice of nomenclature. The notion
of supersingularity was introduced by Barthel and Livné ([7] and [8]) in their classi-
fication of smooth, irreducible, nonsupercuspidal mod-p representations of GL2(F ).
For a general connected reductive group, an irreducible smooth representation π is
called supersingular if the localization of a certain Hom-space associated to π is triv-
ial, while π called supercuspidal if it is not a subquotient of a parabolically induced
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representation. Thanks to recent work of Abe–Henniart–Herzig–Vignéras ([5]), we
now know that these notions are equivalent; we will use them interchangeably.

2. Notation

2.1. General notation. Fix an odd prime number p. Let F be a nonarchimedean
local field of residual characteristic p, with ring of integers oF and maximal ideal
pF . Fix a uniformizer � and let kF = oF /pF denote the residue field of size q = pf .
We fix also a separable closure F of F , and let kF denote its residue field.

Let E denote the unique unramified extension of degree 2 in F . We denote by
oE , pE , etc., the analogous objects for E. Since E is unramified, we may and do
take � as our uniformizer. Let ι : kF

∼→ Fp denote a fixed isomorphism, and assume

that every F
×
p -valued character factors through ι. We identify kF and kE with Fq

and Fq2 , respectively, using the isomorphism ι. We will also identify F×
q2 with the

image of the Teichmüller lifting map [ · ] : F×
q2 → o

×
E when convenient.

We let x �→ x denote the nontrivial Galois automorphism of E fixing F (which
induces the automorphism x �→ xq on Fq2). We shall write E = F (

√
ε), where

ε ∈ o
×
F is some fixed but arbitrary nonsquare unit, so that

√
ε = −

√
ε. We define

U(1)(E/F ) to be the kernel of the norm map

NE/F : E× → F×

x �→ xx.

Denote by G the F -rational points of the algebraic group U(2, 1), defined and
quasisplit over F . Explicitly, we take G to have the form

G =

⎧⎨⎩g ∈ GL3(E) : g�

⎛⎝0 0 1
0 1 0
1 0 0

⎞⎠ g =

⎛⎝0 0 1
0 1 0
1 0 0

⎞⎠⎫⎬⎭ .

The group G possesses, up to conjugacy, two maximal compact subgroups (cf.
[32, Sections 2.10 and 3.2]), given by

K := GL3(oE) ∩G and K ′ :=

⎛⎝oE oE p
−1
E

pE oE oE

pE pE oE

⎞⎠ ∩G.

Let K1,K
′
1 be the following subgroups of G:

K1 :=

⎛⎝1 + pE pE pE

pE 1 + pE pE

pE pE 1 + pE

⎞⎠∩G, K ′
1 :=

⎛⎝1 + pE oE oE

pE 1 + pE oE

p2E pE 1 + pE

⎞⎠∩G.

The group K1 (resp. K ′
1) is the maximal normal pro-p subgroup of K (resp. K ′).

We define

Γ := K/K1
∼= U(2, 1)(Fq2/Fq), Γ′ := K ′/K ′

1
∼= (U(1, 1)×U(1))(Fq2/Fq),

where U(1, 1)(Fq2/Fq) denotes the unitary group defined with respect to the matrix
( 0 1
1 0 ).
We let B denote the upper-triangular Borel subgroup of Γ and U its unipotent

radical; likewise, let B′ denote the lower -triangular Borel subgroup of Γ′ and U′

its unipotent radical. The groups U and U′ are p-Sylow subgroups of Γ and Γ′,
respectively. We define the Iwahori subgroup as I := K ∩K ′, which we may also
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think of as the preimage in K under the reduction-modulo-� map of B. We denote
by I(1) the unique pro-p-Sylow subgroup of I, which is the preimage of U.

Let U and U− denote the upper- and lower-triangular unipotent elements of G,
respectively, and define

u(x, y) :=

⎛⎝1 x y
0 1 −x
0 0 1

⎞⎠ , u−(x, y) :=

⎛⎝1 0 0
x 1 0
y −x 1

⎞⎠ ,

where x, y ∈ E satisfy xx+ y+ y = 0. We have u(x, y)−1 = u(−x, y), u−(x, y)−1 =
u−(−x, y).

We define the following distinguished elements of G:

s :=

⎛⎝0 0 1
0 1 0
1 0 0

⎞⎠, s′ :=

⎛⎝ 0 0 �−1

0 1 0
� 0 0

⎞⎠,

ns :=

⎛⎝ 0 0 −
√
ε
−1

0 1 0√
ε 0 0

⎞⎠, ns′ :=

⎛⎝ 0 0 −�−1
√
ε
−1

0 1 0
�
√
ε 0 0

⎞⎠,

α := s′s =

⎛⎝�−1 0 0
0 1 0
0 0 �

⎞⎠, α−1 := ss′ =

⎛⎝� 0 0
0 1 0
0 0 �−1

⎞⎠.

2.2. Weyl groups. The diagonal maximal torus T of G consists of all elements of
the form ⎛⎝a 0 0

0 δ 0
0 0 a−1

⎞⎠ ,

with a ∈ E×, δ ∈ U(1)(E/F ). Note that T is not split over F . Let

T0 := T ∩K = T ∩K ′, T1 := T ∩K1 = T ∩K ′
1,

H := T0/T1
∼= I/I(1) ∼= F×

q2 ×U(1)(Fq2/Fq).

We will identify the characters of H and those of I/I(1).
Let N denote the normalizer of T in G, and define the finite and affine Weyl

group, respectively, as

W := N/T and Waff := N/T0.

The group Waff is a Coxeter group, generated by the classes of the two reflections
s and s′. We have a decomposition G = INI, where two cosets InI and In′I are
equal if and only if n and n′ have the same image in Waff. This yields the Bruhat
decomposition for G:

G =
⊔

w∈Waff

IwI;

here we engage in the standard abuse of notation, letting IwI denote IẇI for any
preimage ẇ ∈ N of w ∈ Waff. We will take as our double coset representatives the
elements αn, nsα

n, for n ∈ Z. We let � denote the length of an element of Waff,
defined by

q�(w) = [IwI : I]

(cf. Section 3.3.1 in [32]). In particular, we have �(ns) = 3, �(ns′) = 1. Moreover,
one easily checks the pair (I,N) forms a BN pair (cf. [6, Definition 6.55]).
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3. Hecke algebras

3.1. Pro-p-Iwahori-Hecke algebra. We let C denote an algebraically closed
field, and REPC(G) the category of smooth representations of G. Given a smooth

C-representation σ of a closed subgroup J of G, we denote by indGJ (σ) (resp.

c-indGJ (σ)) the induction (resp. compact induction) of σ from J to G.
Let π be a smooth C-representation of G. Frobenius Reciprocity gives

πI(1) ∼= HomI(1)(1, π|I(1)) ∼= HomG(c-ind
G
I(1)(1), π),

where 1 denotes the trivial character of I(1). The pro-p-Iwahori-Hecke algebra

HC(G, I(1)) := EndG(c-ind
G
I(1)(1))

is the algebra of G-equivariant endomorphisms of the universal module c-indGI(1)(1).

This algebra has a natural right action on HomG(c-ind
G
I(1)(1), π) by pre-composition,

which induces a right action on πI(1). In this way, we obtain the functor of I(1)-
invariants, π �→ πI(1), from the category of smooth C-representations of G to the
category of right HC(G, I(1))-modules.

By adjunction, we have a natural identification

HC(G, I(1)) ∼= HomI(1)(1, c-ind
G
I(1)(1)|I(1)) ∼= c-indGI(1)(1)

I(1),

so we may view endomorphisms of c-indG
I(1)(1) as compactly supported functions

on G which are I(1)-biinvariant. This leads to the following definition.

Definition 3.1. Let g ∈ G. We let Tg ∈ HC(G, I(1)) denote the endomorphism of

c-indGI(1)(1) corresponding by adjunction to the characteristic function of I(1)gI(1);

in particular, Tg maps the characteristic function of I(1) to the characteristic func-
tion of I(1)gI(1).

Since Waff = N/T0 is a set of representatives for the double coset space I\G/I,
the group N/T1 gives a set of representatives for I(1)\G/I(1). We therefore only
consider the operators Tn, where n is a representative of a coset in N/T1. These
operators give a basis for HC(G, I(1)) as a vector space over C. Using the natural
adjunction isomorphisms above, we see that if π is a smooth C-representation of
G, v ∈ πI(1), and n ∈ N , then

(3.1) v · Tn =
∑

u∈I(1)\I(1)nI(1)
u−1.v =

∑
u∈I(1)/I(1)∩n−1I(1)n

un−1.v.

3.2. Decomposition of the pro-p-Iwahori-Hecke algebra. Let Ĥ denote the

group of all C×-valued characters of H = T0/T1, and let χ ∈ Ĥ. We define
ζ : F×

q2 → C× and η : U(1)(Fq2/Fq) → C× by

ζ(a) := χ

⎛⎝a 0 0
0 aa−1 0
0 0 a−1

⎞⎠ , η(δ) := χ

⎛⎝1 0 0
0 δ 0
0 0 1

⎞⎠ ,

where a ∈ F×
q2 , δ ∈ U(1)(Fq2/Fq). We stress that the characters ζ and η depend on

χ, though we will supress this dependence from our notation, and write χ = ζ ⊗ η
when convenient. We denote by χs the character given by χs(h) := χ(n−1hn),
where h ∈ H and n ∈ N − T .
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Definition 3.2. Let χ ∈ Ĥ. We say χ is of trivial Iwahori type if χ factors
through the determinant, χ is hybrid if χs = χ, but χ does not factor through the
determinant, and χ is regular if χs �= χ.

Note that χ = ζ ⊗ η factors through the determinant if and only if ζ is trivial,

and χs = χ if and only if ζq+1 is trivial. For χ ∈ Ĥ, we define a representation γχ
of H by

γχ :=

{
χ if χs = χ,

χ⊕ χs if χs �= χ.

From this point onwards, we make the following technical assumption:

Assumption 3.3. The integers char(C) and |H| are relatively prime.

With this hypothesis, we will decompose HC(G, I(1)) into blocks indexed by
W -orbits of C-characters of H.

Definition 3.4. For a C-character χ of H, we define

eχ := |H|−1
∑
h∈H

χ(h)Th,

eγχ
:=

{
eχ if χs = χ,

eχ + eχs if χs �= χ.

Here Th ∈ HC(G, I(1)) denotes the operator Tt0 , where t0 ∈ T0 is a preimage of
h ∈ H.

The operators eχ have the following properties:

• eχeχ = eχ,
• eχeχ′ = 0 for χ �= χ′,
• T1 =

∑
χ∈Ĥ eχ.

These follow readily from the orthogonality relations of characters. Applying these
relations to πI(1) gives the following lemma.

Lemma 3.5. Let π be a smooth C-representation of G. Then (πI(1)) · eχ = πI,χ,

and πI(1) ∼=
⊕

χ∈Ĥ(πI(1)) · eχ =
⊕

χ∈Ĥ πI,χ. Here πI,χ = {v ∈ π : i.v =

χ(i)v for every i ∈ I} is the χ-isotypic subspace of π.

Proof. Since I(1) is normal in I and I/I(1) ∼= H is abelian and of order prime
to char(C), the action of I on πI(1) is semisimple and decomposes as a sum of
characters. As (lifts of) elements of H normalize I(1), equation (3.1) implies that
(πI(1)) · eχ = πI,χ. �

We now use the (central) idempotents eγχ
to decompose the algebraHC(G, I(1)).

Denote by HC(G, γχ) the algebra EndG(c-ind
G
I (γχ)).

Proposition 3.6. There is an isomorphism of C-algebras

HC(G, I(1)) ∼=
⊕
γχ

HC(G, γχ) ∼=
⊕
γχ

HC(G, I(1))eγχ
,

the sums taken over all W -orbits of C-characters of H.

Proof. Assumption 3.3 assures that the regular representation of I/I(1) is semisim-
ple. Using this fact, the proof is nearly identical to that in [33, Proposition 3.1]. �
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Theorem 3.7.

(1) The algebra HC(G, I(1)) is generated by the elements Tns
,Tns′ and eχ, χ ∈

Ĥ, subject to the following relations:
(a)

Tns
eχ = eχsTns

, Tns′ eχ = eχsTns′ ,

eχeχ′ =

{
eχ if χ′ = χ,

0 if χ′ �= χ.

(b) If χ is of trivial type, then

T2
ns
eχ = (q3 − 1)Tns

eχ + q3eχ, T2
ns′

eχ = (q − 1)Tns′ eχ + qeχ.

If χ is hybrid, then

T2
ns
eχ = (q − q2)Tns

eχ + q3eχ, T2
ns′

eχ = (q − 1)Tns′ eχ + qeχ.

If χ is regular, then

T2
ns
eχ = ζ(−1)q3eχ, T2

ns′
eχ = ζ(−1)qeχ.

(2) The center Z of HC(G, I(1)) is generated by the idempotents eγχ
, and the

elements

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(Tns

(Tns′ − (q − 1)) + Tns′ (Tns
− (q3 − 1)) + 1)eχ for χ of trivial type,

(Tns
(Tns′ − (q − 1)) + Tns′ (Tns

− (q − q2)))eχ for χ hybrid,

(Tns′Tns
eχ +Tns

Tns′ eχs) and

(Tns′Tns
eχs +Tns

Tns′ eχ) for χ regular.

Proof. Let M be the subalgebra of HC(G, I(1)) generated by Tns
,Tns′ and the

operators eχ for every χ ∈ Ĥ. By Proposition 3.6, Meγχ
is a subalgebra of

HC(G, γχ). Propositions 3.10, 3.16, 3.22, and 3.24 now show that the elements
Tns

eχ,Tns′ eχ,Tns
eχs and Tns′ eχs of Meγχ

generate HC(G, γχ), and therefore
M = HC(G, I(1)). Furthermore, these propositions and Corollary 3.25 give the
quadratic relations and the structure of the center. �
Remark 3.8. Let hs : E

× → T be the homomorphism defined by

hs(y) =

⎛⎝y 0 0
0 yy−1 0
0 0 y−1

⎞⎠ ,

and set

τs := (q + 1)
∑

y∈F
×
q2

Ths(y) − q
∑
y∈F

×
q

Ths(y), τs′ :=
∑
y∈F

×
q

Ths(y).

Using Fourier inversion and the theorem above, the quadratic relations take the
form

T2
ns

= Tns
τs + q3Ths(−1),

T2
ns′

= Tns′ τs′ + qThs(−1).

Moreover, we see that the center Z of HC(G, I(1)) is generated by the central
idempotents eγχ

and the elements

Tns′Tns
ϑ1 +Tns

Tns′ϑ2 − Tns
τs′ − Tns′ τs + (q − 1)τs,
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Tns′Tns
ϑ2 +Tns

Tns′ϑ1 − Tns
τs′ − Tns′ τs + (q − 1)τs.

Here
ϑ1 :=

∑
χs=χ

eχ + 2
∑
χs �=χ

χ∈{χ,χs}

eχ, ϑ2 :=
∑
χs=χ

eχ + 2
∑
χs �=χ

χs∈{χ,χs}

eχs ,

where the sums are taken over W -orbits of C-characters, such that ϑ1 + ϑ2 = 2T1.

In light of Theorem 3.7, we make the following definition:

Definition 3.9. Assume char(C) = p, and let M be a nonzero simple right
HC(G, I(1))-module which admits a central character. We say M is supersingular
if every generator of the center Z (as given in Theorem 3.7) which is not a central
idempotent eγχ

, acts by 0.

In the subsequent sections, we describe the structures of the Hecke algebras
HC(G, γχ). From the descriptions of these blocks, we obtain Theorem 3.7, and
identify the supersingular modules of HC(G, I(1)) when char(C) = p.

3.3. The trivial case. We first assume that χ is of trivial type, meaning χ factors
through the determinant and χ = η ◦ det, for η a character of U(1)(Fq2/Fq) (which
we also view as a character of U(1)(E/F )).

Let 1I ∈ c-indGI (χ) denote the function with support in I, taking the value 1 at

the identity. We let Tns
(resp. Tns′ ) denote the endomorphism of c-indGI (χ) sending

1I to the function with support InsI (resp. Ins′I), taking the value 1 at ns (resp.
ns′), on which I acts by χ. In the notation of the previous section, we have

Tns
= Tns

eχ, Tns′ = Tns′ eχ.

We now arrive at the following result on the structure of HC(G,χ):

Proposition 3.10. The algebra HC(G,χ) is a noncommutative algebra, generated
by Tns

and Tns′ , subject to the relations

(Tns
+ 1)(Tns

− q3) = 0,

(Tns′ + 1)(Tns′ − q) = 0.

The center Zχ is generated by Z = Tns
(Tns′ − (q − 1)) + Tns′ (Tns

− (q3 − 1)) + 1.
We have an isomorphism of algebras

HC(G,χ) ∼= C〈X,Y 〉/(X2 + (1− q3)X − q3, Y 2 + (1− q)Y − q),

sending Tns
to X and Tns′ to Y . Here C〈X,Y 〉 denotes the noncommutative poly-

nomial algebra in two variables over C.

Remark 3.11. Note that using the length function on Waff, the Hecke relations take
the simple form (Tn + 1)(Tn − q�(n)) = 0, where n = ns or ns′ .

Proof. See the proof of Proposition 3.16 below. �
Given this result, we can quickly classify the finite-dimensional simple right

HC(G,χ)-modules.

Definition 3.12. (1) Let (θ, θ′) ∈ {−1, q3}×{−1, q}. We define the characters
μθ,θ′ : HC(G,χ) → C by

Tns
�→ θ, Tns′ �→ θ′.

The central element Z maps to θ(θ′ − q + 1) + θ′(θ − q3 + 1) + 1 ∈ {q3 +
q + 1,−q4}.
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(2) Let 〈v1, v2〉C be a two-dimensional vector space over C, and let λ ∈ C. We
define M(λ) to be the following right HC(G,χ)-module:

v1 · Tns
= −v1, v1 · Tns′ = v2,

v2 · Tns
= (λ− q)v1 + q3v2, v2 · Tns′ = qv1 + (q − 1)v2,

The central element Z acts by λ.

One may check directly that the action of HC(G,χ) on M(λ) is well defined.
This fact will also be made clear in the proof of Theorem 3.15.

Proposition 3.13. Assume q3 + 1 �= 0 in C (note that q + 1 �= 0 by Assumption
3.3). Then the module M(λ) is reducible if and only if λ = q3 + q + 1 or λ = −q4.
In these cases, we have the following nonsplit exact sequences:

0 → μq3,q → M(q3 + q + 1) → μ−1,−1 → 0,

0 → μq3,−1 → M(−q4) → μ−1.q → 0.

Proof. Assume that M(λ) is reducible, so that we have some character μθ,θ′ ⊂
M(λ). By examining the action of the center, we conclude that λ ∈ {q3+q+1,−q4}.
Assume λ = q3 + q + 1; the other case is similar. One then checks directly that

〈v1 + v2〉C ∼= μq3,q ⊂ M(q3 + q + 1) and M(q3 + q + 1)/μq3,q
∼= μ−1,−1.

The assumption q3 +1 �= 0 guarantees that the surjection M(q3 + q+ 1) → μ−1,−1

cannot split. �

Proposition 3.14. Assume q3 + 1 = 0 in C. Then the module M(λ) is reducible
if and only if λ = q. In this case the module decomposes as M(q) ∼= μ−1,q⊕μ−1,−1.

Proof. Assume that M(λ) is reducible, so that it contains either μ−1,−1 or μ−1,q.
By examining the action of the center, we conclude that λ = q. One checks directly
that

M(q) ∼= 〈v1 + v2〉C ⊕ 〈−qv1 + v2〉C ∼= μ−1,q ⊕ μ−1,−1

(Assumption 3.3 guarantees that the sum is direct). �

We now imitate the proof of Theorem 1.2 in [33] to classify simple rightHC(G,χ)-
modules.

Theorem 3.15. Every finite-dimensional simple right HC(G,χ)-module is isomor-
phic to either a character μθ,θ′ , (θ, θ′) ∈ {−1, q3}×{−1, q}, or a module of the form
M(λ), λ �= q3 + q + 1,−q4.

Proof. Assume M is a nonzero simple right module which is not a character, and
assume that Z acts by λ. We claim that the space ker(Tns

+1) is a nontrivial proper
subspace of M . Indeed, if ker(Tns

+ 1) = {0} or M , the element Tns
would act by

a scalar, and any nonzero eigenvector for Tns′ would generate a one-dimensional
submodule. This gives a contradiction, since M was assumed simple of dimension
greater than one.

The element Tns′ (Tns
− q3) maps ker(Tns

+ 1) into itself, and therefore has an
eigenvector v in ker(Tns

+ 1). We have

v · Tns′ (Tns
− q3) = v · (Z − (Tns

+ 1)Tns′ + (q − 1)Tns
− 1)

= λv + (q − 1)v · Tns
− v

= (λ− q)v.
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Consider now the subspace V := 〈v〉C +〈v ·Tns′ 〉C . The quadratic relations and the
computation above show that V is stable under HC(G,χ), and therefore must be
all of M by simplicity. Moreover, since M was assumed to be of dimension greater
than one, we have v · Tns′ �= 0, and the sum 〈v〉C + 〈v · Tns′ 〉C is direct. Writing out
the actions of Tns

and Tns′ on the basis {v, v · Tns′} shows that M ∼= M(λ). We
again use simplicity of M to deduce that λ �= q3 + q + 1,−q4. �

3.4. The hybrid case. We now assume that χs = χ = ζ ⊗ η, but that χ does
not factor through the determinant. This condition implies that the character ζ is
nontrivial. In addition, we have ζ(a) = ζ(a−1); since the map a �→ aq+1 maps F×

q2

onto F×
q , this implies ζ is trivial on F×

q .

As before, we let 1I ∈ c-indGI (χ) denote the function with support in I, taking
the value 1 at the identity. We let Tns

(resp. Tns′ ) denote the endomorphism of

c-indGI (χ) sending 1I to the function with support InsI (resp. Ins′I), taking the
value 1 at ns (resp. ns′), on which I acts by χ. In the notation of Section 3.2, we
have

Tns
= Tns

eχ, Tns′ = Tns′ eχ.

Proposition 3.16. The algebra HC(G,χ) is a noncommutative algebra, generated
by Tns

and Tns′ , subject to the relations

(Tns
+ q2)(Tns

− q) = 0,

(Tns′ + 1)(Tns′ − q) = 0.

The center Zχ is generated by Z = Tns
(Tns′ − (q − 1)) + Tns′ (Tns

− (q − q2)). We
have an isomorphism of algebras

HC(G,χ) ∼= C〈X,Y 〉/(X2 + (q2 − q)X − q3, Y 2 + (1− q)Y − q),

sending Tns
to X and Tns′ to Y . Here C〈X,Y 〉 denotes the noncommutative poly-

nomial algebra in two variables over C.

Proof. We shall prove Propositions 3.10 and 3.16 simultaneously, assuming only
that χs = χ (recall that this implies that ζ is trivial on F×

q ). By Frobenius Reci-
procity, we may view elements of HC(G,χ) as functions ϕ : G → C satisfying

ϕ(igi′) = χ(i)ϕ(g)χ(i′)

for g ∈ G, i, i′ ∈ I (cf. [7, Proposition 5(1)]). If Tϕ1
, Tϕ2

are the endomorphisms
associated to ϕ1, ϕ2, respectively, then the composition product on HC(G,χ) gives
Tϕ1

Tϕ2
= Tϕ1∗ϕ2

, where

ϕ1 ∗ ϕ2(g) =
∑

h∈G/I

ϕ1(h)ϕ2(h
−1g)

(see [7, Proposition 5(3)]).
Assume that ϕ has support in IwI, where w ∈ Waff. Let w = s1s2 · · · sk be a

reduced word expression for w, where si ∈ {s, s′}, and let ϕns
(resp. ϕns′ ) be the

function with support in InsI (resp. Ins′I) taking the value 1 at ns (resp. ns′).
We claim that ϕ is a scalar multiple of ϕns1

∗ϕns2
∗ . . .∗ϕnsk

. Indeed, the definition
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of the convolution product shows that supp(ϕ1 ∗ ϕ2) ⊂ supp(ϕ1)supp(ϕ2), and
therefore

supp(ϕns1
∗ ϕns2

∗ . . . ∗ ϕnsk
) ⊂ supp(ϕns1

)supp(ϕns2
) · · · supp(ϕnsk

)

= Ins1Ins2I · · · InskI

= IwI,

where the last equality follows from [6, Proposition 6.36(4)]. An elementary induc-
tive argument shows that ϕns1

∗ϕns2
∗ . . . ∗ϕnsk

�= 0, which implies that HC(G,χ)
is generated as an algebra by Tns

and Tns′ .
It suffices to determine the relations among Tns

and Tns′ . Note first that Tns

(resp. Tns′ ) preserves the space c-indKI (χ) ⊂ c-indGI (χ) (resp. c-indK
′

I (χ) ⊂
c-indGI (χ)). Additionally, we have the following identity, valid for y �= 0:

(3.2) u−(x, y) = u
(
−x y−1, y−1

)
hs(−y−1

√
ε)nsu(−xy−1, y−1),

where hs : E× → T is the homomorphism of the remark following Theorem 3.7.
Using this notation, Proposition 3.18 of [14] implies

T 2
ns

= |U|+

⎛⎝ ∑
u(x,y)∈U−{1}

χ−1(hs(y
−1

√
ε
−1

))

⎞⎠Tns

= q3 +

⎛⎜⎜⎝ ∑
x,y∈F

q2
,y �=0

xx+y+y=0

ζ(y
√
ε)

⎞⎟⎟⎠ Tns

= q3 +

⎛⎜⎝ ∑
y∈F

×
q

ζ(y) + (q + 1)

⎛⎜⎝ ∑
y∈F

×
q2

ζ(y)−
∑
y∈F

×
q

ζ(y)

⎞⎟⎠
⎞⎟⎠ Tns

=

{
q3 + (q3 − 1)Tns

if ζ is trivial,

q3 + (q − q2)Tns
if ζ is nontrivial.

T 2
ns′

= |U′|+

⎛⎝ ∑
u−(0,�y)∈U′−{1}

χ−1(hs(y
√
ε
−1

))

⎞⎠Tns

= q +

⎛⎝ ∑
y∈F

×
q

ζ−1(y)

⎞⎠ Tns′

= q + (q − 1)Tns′ .

This shows that any element of HC(G,χ) may be written as a linear combination
of monomials in Tns

and Tns′ , with alternating terms. Given two distinct such

monomials, the two functions in c-indG
I (χ) obtained by applying these operators to

1I will have disjoint support (this follows from the fact that (I,N) is a BN pair).
Therefore, the quadratic relations are the only relations satisfied by Tns

and Tns′ ,
and we obtain the isomorphism of HC(G,χ) with a quotient of a noncommutative
polynomial algebra.

Now, it is an elementary computation to check that Z ∈ Zχ. To verify the claim
about the centers Zχ of the algebras HC(G,χ) in general, we first note that any
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central element, when viewed as a polynomial in Tns
and Tns′ , must be of even

degree. Moreover, the quadratic relations imply that the coefficients of the two
highest even-degree terms must be equal. Let Y ∈ Zχ be of degree 2k. Then there
exists some c ∈ C such that Y − cZk is of strictly smaller degree. By induction on
degree, Y − cZk is a polynomial in Z, and therefore Zχ = C[Z]. �

As before, we can now classify the finite-dimensional simple right HC(G,χ)-
modules.

Definition 3.17. (1) Let (θ, θ′) ∈ {−q2, q}×{−1, q}. We define the characters
μθ,θ′ : HC(G,χ) → C by

Tns
�→ θ, Tns′ �→ θ′.

The central element Z maps to θ(θ′−q+1)+θ′(θ−q+q2) ∈ {q3+q,−2q2}.
(2) Let 〈v1, v2〉C be a two-dimensional vector space over C, and let λ ∈ C. We

define M(λ) to be the following right HC(G,χ)-module:

v1 · Tns
= −q2v1, v1 · Tns′ = v2,

v2 · Tns
= (λ+ q2 − q3)v1 + qv2, v2 · Tns′ = qv1 + (q − 1)v2.

The central element Z acts by λ.

Again, the action of HC(G,χ) on M(λ) is well defined. As the proofs of the
following results are similar to their counterparts in the trivial case (cf. Propositions
3.13 and 3.14, and Theorem 3.15), we omit them.

Proposition 3.18. Assume char(C) �= p. Then M(λ) is reducible if and only if
λ = q3 + q or λ = −2q2. In these cases, we have the following nonsplit exact
sequences:

0 → μq,q → M(q3 + q) → μ−q2,−1 → 0,

0 → μq,−1 → M(−2q2) → μ−q2,q → 0.

Proposition 3.19. Assume char(C) = p. Then M(λ) is reducible if and only if
λ = 0. In this case the module decomposes as M(0) ∼= μ0,0 ⊕ μ0,−1.

Theorem 3.20. Every finite-dimensional simple right HC(G,χ)-module is isomor-
phic to either a character μθ,θ′ , (θ, θ′) ∈ {−q2, q}×{−1, q}, or a module of the form
M(λ), λ �= q3 + q,−2q2.

3.5. The regular case. We assume now that χs �= χ = ζ⊗η. In this case we have
nontrivial intertwining maps between c-indGI (χ) and c-indGI (χ

s), and we are led to
consider the algebra

HC(G, γχ) = HC(G,χ⊕ χs)

= HC(G,χ)⊕HomG(c-ind
G
I (χ), c-ind

G
I (χ

s))

⊕ HomG(c-ind
G
I (χ

s), c-indGI (χ))⊕HC(G,χs).

We first determine the algebra HC(G,χ). For n ∈ N , we denote by 1InI ∈
c-indGI (χ) the function with support InI, taking the value 1 at n, on which I
acts by χ or χs (depending on the class of n in W ). We let Tα−1 (resp. Tα) denote
the endomorphism of c-indGI (χ) sending 1I to 1Iα−1I (resp. 1IαI).
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Proposition 3.21. The algebra HC(G,χ) is commutative, generated by Tα−1 and
Tα, with the relations

Tα−1Tα = TαTα−1 = q4.

We have an isomorphism of algebras HC(G,χ) ∼= C[X,Y ]/(XY −q4), sending Tα−1

to X and Tα to Y .

Proof. We adopt the same method as in the proof of Proposition 3.16, viewing
elements of HC(G,χ) as functions ϕ on the double cosets I\G/I. In this case,
however, the relation ϕ(igi′) = χ(i)ϕ(g)χ(i′) shows that the functions ϕ associated
to elements of HC(G,χ) are supported only on cosets of the form IαnI, n ∈ Z. If
ϕ has support in Iα−nI (resp. IαnI) with n > 0, then ϕ is a scalar multiple of
ϕα−1 ∗ ϕα−1 ∗ . . . ∗ ϕα−1 (resp. ϕα ∗ ϕα ∗ . . . ∗ ϕα), the convolution taken n times.

It therefore suffices to compute the products ϕα−1 ∗ϕα and ϕα ∗ϕα−1 . We com-
pute the first of these; the method of computation for the second is the same. We
have supp(ϕα−1 ∗ϕα) ⊂ Iα−1IαI ⊂ I � InsI � Iα−1nsI, and since the convolution
must have support on cosets of the form IαnI, we actually have supp(ϕα−1∗ϕα) ⊂ I.
Hence, we need only evaluate this function at 1. We have:

ϕα−1 ∗ ϕα(1) =
∑

h∈Iα−1I/I

ϕα−1(h)ϕα(h
−1) =

∑
h∈Iα−1I/I

1 = q�(α
−1) = q4.

�

We now turn our attention to HomG(c-ind
G
I (χ), c-ind

G
I (χ

s)). This has the struc-
ture of an (HC(G,χs),HC(G,χ))-bimodule, with the action given by post- and
pre-composition, respectively. By Frobenius Reciprocity we have

HomG(c-ind
G
I (χ), c-ind

G
I (χ

s)) ∼= HomI(χ, c-ind
G
I (χ

s)|I) ∼= c-indGI (χ
s)I,χ,

which has a basis consisting of the functions 1InsαnI with support Insα
nI and

value 1 at nsα
n, on which I acts by χ. We let Sn,χ denote the homomorphism

sending 1I ∈ c-indGI (χ) to 1InsαnI ∈ c-indGI (χ
s), and append a χ (or χs) to the

parameters for the operator Tα (or Tα−1) to specify the Hecke algebra to which it
corresponds. In the notation of Section 3.2, we have

S0,χ = Tns
eχ, S0,χs = Tns

eχs ,

S−1,χ = Tns′ eχ, S−1,χs = Tns′ eχs .

We note that the set

(3.3) {idχ, T m
α,χ, T m

α−1,χ, idχs , T m
α,χs , T m

α−1,χs , Sn,χ, Sn,χs}m>0,n∈Z

forms a basis for HC(G, γχ), where idχ (resp. idχs) denotes the identity element of
HC(G,χ) (resp. HC(G,χs)).

Proposition 3.22. We have the following relations for the (HC(G,χs),HC(G,χ))-

bimodule HomG(c-ind
G
I (χ), c-ind

G
I (χ

s)):

Tα−1,χsSn,χ = Sn,χTα,χ =

⎧⎪⎨⎪⎩
Sn+1,χ n ≥ 0,

qSn+1,χ n = −1,

q4Sn+1,χ n ≤ −2.

Tα,χsSn,χ = Sn,χTα−1,χ =

⎧⎪⎨⎪⎩
q4Sn−1,χ n ≥ 1,

q3Sn−1,χ n = 0,

Sn−1,χ n ≤ −1.
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In particular, HomG(c-ind
G
I (χ), c-ind

G
I (χ

s)) is generated as a module by S0,χ and
S−1,χ.

Proof. We will need the following coset decompositions:

IαI =
⊔

x∈F
q2

,y∈oE/p2
E

xx+y+y=0

Iαu(x, y),(3.4)

Iα−1I =
⊔

x∈F
q2

,y∈oE/p2
E

�xx+y+y=0

Iα−1u−(�x,�y),(3.5)

Insα
nI =

⊔
x∈oE/p

n+1
E

,y∈oE/p
2n+1
E

xx+y+y=0

Insα
nu(x, y) if n ≥ 0,(3.6)

Insα
nI =

⊔
x∈oE/p

−n−1
E

,y∈oE/p
−2n−1
E

�xx+y+y=0

Insα
nu−(�x,�y) if n < 0.(3.7)

In order to compute Sn,χTα,χ, it suffices to know its action on the function 1I ∈
c-indGI (χ). The definitions of Sn,χ and Tα,χ show that the image will have support
contained in Insα

nIαI. Using Proposition 6.36 and Exercise 6.37 of [6], we see that
this product of double cosets is equal to Insα

n+1I (if �(nsα
n+1) = �(nsα

n)+ �(α)),
or is contained in Insα

n+1I � Iα−nI � Iα−n−1I (if �(nsα
n+1) �= �(nsα

n) + �(α)).
Since the support of Sn,χTα,χ(1I) must be of the form Insα

mI, we see that in both
cases the support is contained in Insα

n+1I, and therefore it suffices to evaluate the
function at nsα

n+1. This gives (using equation (3.4))

Sn,χTα,χ(1I)(nsα
n+1) = Sn,χ

⎛⎜⎜⎝ ∑
x∈F

q2
,y∈oE/p2

E
xx+y+y=0

u(−x, y)α−1.1I

⎞⎟⎟⎠ (nsα
n+1)

=
∑

x∈F
q2

,y∈oE/p2
E

xx+y+y=0

u(−x, y)α−1.1InsαnI(nsα
n+1)

=
∑

x∈F
q2

,y∈oE/p2
E

xx+y+y=0

1InsαnI(nsα
n+1u(−x, y)α−1)

eq. (3.2)
=

⎧⎪⎨⎪⎩
1 n ≥ 0,

q n = −1,

q4 n ≤ −2.

The other relations are proved similarly, using the various coset decompositions
above. �
Corollary 3.23. As a right HC(G,χ)-module, we have

HomG(c-ind
G
I (χ), c-ind

G
I (χ

s))

∼= (HC(G,χ)⊕HC(G,χ))/((Tα−1,χ,−q3), (−q, Tα,χ)),
the isomorphism sending S0,χ to (1, 0) and S−1,χ to (0, 1). Likewise, as a left
HC(G,χs)-module, we have
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HomG(c-ind
G
I (χ), c-ind

G
I (χ

s))

∼= (HC(G,χs)⊕HC(G,χs))/((Tα,χs ,−q3), (−q, Tα−1,χs)),

the isomorphism sending S0,χ to (1, 0) and S−1,χ to (0, 1).

In addition to the bimodule structure on HomG(c-ind
G
I (χ), c-ind

G
I (χ

s)), we also

have a composition product between elements Sn,χs ∈HomG(c-ind
G
I (χ

s), c-indGI (χ))

and elements Sm,χ ∈ HomG(c-ind
G
I (χ), c-ind

G
I (χ

s)). The product of two such ho-
momorphisms will be an element of HC(G,χ).

Proposition 3.24. The composition Sn,χsSm,χ has the following property:

Sn,χsSm,χ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ζ(−1)q3+4min(n,m)T max(0,m−n)

α,χ T max(n−m,0)
α−1,χ n,m ≥ 0,

ζ(−1)q1+4min(−n−1,−m−1)T max(0,m−n)
α,χ T max(n−m,0)

α−1,χ n,m < 0,

ζ(−1)T m−n
α,χ n < 0,m ≥ 0,

ζ(−1)T n−m
α−1,χ m < 0, n ≥ 0.

Proof. By Proposition 3.22, it suffices to compute the four products S0,χsS0,χ,
S−1,χsS−1,χ, S−1,χsS0,χ and S0,χsS−1,χ. The first two products follow again from
Proposition 3.18 of [14]. We prove the third relation; the last follows similarly. The
method of proof is the same as in the proof of Proposition 3.22, this time using
equations (3.6) and (3.7) for n = 0 and n = −1. The definition of S−1,χs and S0,χ

and properties of BN pairs show that the function S−1,χsS0,χ(1I) will have support
in IαI. This gives

S−1,χsS0,χ(1I)(α) = S−1,χs

⎛⎜⎜⎝ ∑
x,y∈F

q2

xx+y+y=0

u(−x, y)n−1
s .1I

⎞⎟⎟⎠ (α)

=
∑

x,y∈F
q2

xx+y+y=0

u(−x, y)n−1
s .1Ins′I(α)

=
∑

x,y∈F
q2

xx+y+y=0

1Ins′I(αu(−x, y)n−1
s )

eq. (3.2)
= ζ(−1).

�

Combining Propositions 3.21, 3.22, and 3.24, we now have a full description of
the algebra structure of HC(G, γχ). When char(C) = p, there is a more elegant
presentation of HC(G, γχ):

Corollary 3.25. Assume char(C) = p, let R = C[X,Y ]/(XY ), m = (X,Y ) ⊂ R,
and let M denote the R-module R/(Y )⊕R/(X) ∼= C[X]⊕C[Y ]. The ideal m acts
on M , and we lift the image of this action to R by sending (f(X), g(Y )) ∈ mM to
f(X) + g(Y ) ∈ R. We then have

HC(G, γχ) ∼=
(
R M
m R

)
.

The isomorphism is given by
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Tα,χ �→
(
Y 0
0 0

)
, Tα−1,χ �→

(
X 0
0 0

)
,

Tα,χs �→
(
0 0
0 X

)
, Tα−1,χs �→

(
0 0
0 Y

)
,

Sn,χ �→
(

0 0
ζ(−1)Y n+1 0

)
, Sn,χs �→

(
0 (Xn, 0)
0 0

)
for n ≥ 0,

Sn,χ �→
(

0 0
ζ(−1)X−n 0

)
, Sn,χs �→

(
0 (0, Y −n−1)
0 0

)
for n < 0.

The center Zγχ
is isomorphic to C[X,Y ]/(XY ), generated by Tα,χs + Tα−1,χ and

Tα,χ + Tα−1,χs .

Remark 3.26. The description of the center Zγχ
of HC(G, γχ) is the same for the

case char(C) �= p, with C[X,Y ]/(XY ) replaced by C[X,Y ]/(XY − q4).

Proof. It only remains to verify the claim about the center. This follows easily from
the isomorphism above. �

Wemay now classify finite-dimensional simple modules for the algebraHC(G, γχ).

Proposition 3.27. Assume char(C) �= p. Then HC(G, γχ) admits no characters.

Proof. Let μ be a character of HC(G, γχ). Since S2
n,χ = S2

n,χs = 0, we must have
μ(Sn,χ) = μ(Sn,χs) = 0 for every n ∈ Z. Proposition 3.24 now implies that all
elements of HC(G,χ) and HC(G,χs) map to 0. This gives a contradiction, since
1 = μ(idc-indG

I (γχ)) = μ(idχ + idχs) = 0. �

Definition 3.28. Assume char(C) = p, and let i ∈ {0, 1}. We define μi :
HC(G, γχ) → C to be the character for which

idχsi �→ 1

and every other basis element in the set (3.3) maps to 0.

Proposition 3.29. Assume char(C) = p. Then the characters of HC(G, γχ) are
exactly μ0 and μ1.

Proof. As in the characteristic prime-to-p case, we use Propositions 3.22 and 3.24
to conclude that every basis element besides idχ and idχs must map to zero. Since
idχ+idχs = idc-indG

I (γχ) and idχidχs = 0, we see that the characters must be exactly

those stated. �
We now turn our attention to modules of dimension greater than one. We first

assume that char(C) �= p. Fix a choice of square root
√
ζ(−1) of ζ(−1), and let

A =
√
ζ(−1)(S0,χ + S−1,χs);

then A2 = Tα,χ + Tα−1,χs , and HC(G, γχ) is free of rank two over Zγχ
[A], with

basis {idχ, idχs}.
Let λ ∈ C×, and let μλ,

√
λ denote the character of Zγχ

[A] defined by

(Tα,χ + Tα−1,χs) �→ λ, (Tα,χs + Tα−1,χ) �→ q4λ−1, A �→
√
λ.

By the description of the center in Remark 3.26, we see that every character of
Zγχ

[A] is of the form μλ,
√
λ. We consider the induced representation μλ,

√
λ⊗Zγχ [A]

HC(G, γχ). Since the algebra HC(G, γχ) admits no characters, this immediately
implies that this module is simple.
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Lemma 3.30. The (isomorphism class of the) induced representation μλ,
√
λ⊗Zγχ [A]

HC(G, γχ) is independent of the choice of square roots
√
λ and

√
ζ(−1).

Proof. Let 〈v〉C be the underlying space of μλ,
√
λ, so that μλ,

√
λ⊗Zγχ [A]HC(G, γχ)

is spanned by {v⊗ idχ, v⊗ idχs}. The action of Zγχ
[A] on the vector v⊗(idχ− idχs)

shows that μλ,−
√
λ is contained in μλ,

√
λ ⊗Zγχ [A] HC(G, γχ)|Zγχ [A]. By Frobenius

Reciprocity we have

{0} �= HomZγχ [A](μλ,−
√
λ, μλ,

√
λ ⊗Zγχ [A] HC(G, γχ)|Zγχ [A])

∼= HomHC(G,γχ)(μλ,−
√
λ ⊗Zγχ [A] HC(G, γχ), μλ,

√
λ ⊗Zγχ [A] HC(G, γχ)).

As both modules are simple, the result follows. �

Given this lemma, we define M(λ) := μλ,
√
λ ⊗Zγχ [A] HC(G, γχ). Examining

central characters, we see that the modules M(λ) are pairwise nonisomorphic for
distinct values of λ.

Theorem 3.31. Assume char(C) �= p. Every finite-dimensional simple right
HC(G, γχ)-module is isomorphic to one of the form M(λ), λ ∈ C×.

Proof. Assume M is a nonzero simple right module. Since Zγχ
[A] is commuta-

tive and M finite-dimensional, we have that M |Zγχ [A] contains a character μλ,
√
λ.

Frobenius Reciprocity gives

{0} �= HomZγχ [A](μλ,
√
λ,M |Zγχ [A]) ∼= HomHC(G,γχ)(M(λ),M),

which implies M(λ) ∼= M by simplicity of M(λ) and M . �

Assume now that char(C) = p, fix a choice of square root
√
ζ(−1) of ζ(−1), and

let

A1 =
√
ζ(−1)(S0,χ + S−1,χs), A2 =

√
ζ(−1)(S0,χs + S−1,χ).

Note that A1A2 = A2A1 = 0, A2
1 = Tα,χ + Tα−1,χs , and A2

2 = Tα−1,χ + Tα,χs . The
algebra HC(G, γχ) is free of rank two over Zγχ

[A1,A2], with basis {idχ, idχs}.
Let λ, λ′ ∈ C be such that λλ′ = 0, and let μλ,λ′,

√
λ,

√
λ′ denote the character of

Zγχ
[A1,A2] defined by

(Tα,χ + Tα−1,χs) �→ λ, (Tα−1,χ + Tα,χs) �→ λ′,

A1 �→
√
λ, A2 �→

√
λ′.

We consider the induced representation μλ,λ′,
√
λ,

√
λ′ ⊗Zγχ [A1,A2] HC(G, γχ).

Proposition 3.32. The module μλ,λ′,
√
λ,

√
λ′ ⊗Zγχ [A1,A2] HC(G, γχ) is reducible if

and only if (λ, λ′) = (0, 0). In this case, we have

μ0,0,0,0 ⊗Zγχ [A1,A2] HC(G, γχ) ∼= μ0 ⊕ μ1.

Proof. Assume that μλ,λ′,
√
λ,

√
λ′ ⊗Zγχ [A1,A2] HC(G, γχ) is reducible, so that it con-

tains either μ0 or μ1. In either case, both A1 and A2 must act by 0, and therefore
(λ, λ′) = (0, 0). The action of idχ and idχs show that if 〈v〉C denotes the under-
lying space of μ0,0,0,0, then 〈v ⊗ idχ〉C ∼= μ0 and 〈v ⊗ idχs〉C ∼= μ1 as HC(G, γχ)-
modules. �
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Lemma 3.33. The (isomorphism class of the) induced representation μλ,λ′,
√
λ,

√
λ′

⊗Zγχ [A1,A2] HC(G, γχ) is independent of the choice of square roots
√
λ,

√
λ′, and√

ζ(−1).

Proof. The proof is similar to the proof of Lemma 3.30. �

Given this lemma, we can define M(λ, λ′) := μλ,λ′,
√
λ,

√
λ′ ⊗Zγχ [A1,A2]HC(G, γχ).

By examining central characters, we see that the modules M(λ, λ′) are pairwise
nonisomorphic for distinct pairs (λ, λ′).

Theorem 3.34. Assume char(C) = p. Every finite-dimensional simple right
HC(G, γχ)-module is isomorphic to either a character μ0 or μ1, or a module of
the form M(λ, λ′) with λλ′ = 0, (λ, λ′) �= (0, 0).

Proof. Again, the proof is similar to the prime-to-p case (cf. Theorem 3.31). �

We conclude with one final definition.

Definition 3.35. Let χ : H → C× be an arbitrary character, and let M be a finite-
dimensional simple module for HC(G, γχ). We append χ to the list of parameters
of M , and use this notation to denote the corresponding module for HC(G, I(1)),
via the decomposition of Proposition 3.6.

Remark 3.36. The isomorphism in Corollary 3.25 depends on the ordered pair
(χ, χs). There is an obvious isomorphism of algebras

HC(G,χ⊕ χs) ∼= HC(G,χs ⊕ χ),

which identifies simple modules. In particular, the isomorphism gives M(λ, χ) ∼=
M(q4λ−1, χs) if char(C) �= p, and μ0,χ

∼= μ1,χs , μ1,χ
∼= μ0,χs , M(λ, λ′, χ) ∼=

M(λ′, λ, χs) if char(C) = p.

4. Principal series and supersingular modules

4.1. Principal series. We shall assume from this point onwards that C = Fp, and

that all representations are smooth Fp-representations. We call such representations
mod-p or modular representations. In an attempt to understand supersingular
representations of G (cf. Introduction), we will make use of the functor sending a
smooth representation π to πI(1), called the functor of I(1)-invariants. By Lemma
3(1) of [7], if π is a nonzero smooth representation of G, then the HFp

(G, I(1))-

module πI(1) will also be nonzero.
Let χ̃ = ζ̃ ⊗ η̃ be a smooth character of the full torus T of G, and consider

the principal series representation indGB(χ̃), where B is the standard upper Borel

subgroup of G, and ζ̃ and η̃ are characters of E× and U(1)(E/F ), respectively. In

Théorème 3.8 of [3], Abdellatif has shown that indGB(χ̃) is reducible if and only if
χ̃ = η̃ ◦ det, in which case we have a nonsplit short exact sequence

0 → η̃ ◦ det → indGB(η̃ ◦ det) → η̃ ◦ det⊗StG → 0,

where StG = indGB(1)/1 is the (irreducible) Steinberg representation of G.
The Bruhat decomposition applied toK and the Iwasawa decomposition together

imply that
G = BI �BnsI = BI(1) �BnsI(1).
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Therefore, we may take as a basis of indGB(χ̃)
I(1) the functions {f1, f2}, defined by

f1(1) = 1, f1(ns) = 0,
f2(1) = 0, f2(ns) = 1;

the function f1 is the unique I(1)-invariant function with support BI(1) taking the
value 1 at the identity (likewise for f2, supported in BnsI(1)).

Since T1 is a pro-p subgroup, the restriction of χ̃ to T1 must be trivial. Let χ
denote the representation of H = T0/T1 given by restricting χ̃ to T0. The action of

HFp
(G, I(1)) on indGB(χ̃)

I(1) will depend on the character χ. If χs = χ, then in the

notation of Lemma 3.5 we have

indGB(χ̃)
I(1) = indGB(χ̃)

I,χ,

and the action of HFp
(G, I(1)) factors through the algebra HFp

(G,χ) (via the de-

composition of Proposition 3.6). Likewise, if χs �= χ, then

indGB(χ̃)
I(1) = indGB(χ̃)

I,χ⊕χs

= indGB(χ̃)
I,χ ⊕ indGB(χ̃)

I,χs

,

and the action of HFp
(G, I(1)) factors through HFp

(G,χ⊕ χs).

Theorem 4.1. The algebra HFp
(G, I(1)) acts on 〈f1, f2〉Fp

in the following way:

(1) If χ is of trivial type, then

f1 · eχ = f1, f1 · Tns
= f2, f1 · Tns′ = −f1,

f2 · eχ = f2, f2 · Tns
= −f2, f2 · Tns′ = χ̃(α)f1.

(2) If χ is hybrid, then

f1 · eχ = f1, f1 · Tns
= f2, f1 · Tns′ = −f1,

f2 · eχ = f2, f2 · Tns
= 0, f2 · Tns′ = χ̃(α)f1.

(3) If χ is regular, then

f1 · eχ = f1, f1 · Tns
= f2, f1 · Tns′ = 0,

f2 · eχs = f2, f2 · Tns
= 0, f2 · Tns′ = ζ̃(−1)χ̃(α)f1.

Proof. Using Proposition 6 in [7], we can compute the action of Tns
and Tns′ on

fi ∈ indGB(χ̃)
I(1). Equation (3.6) implies

fi · Tns
=

∑
x,y∈F

q2

xx+y+y=0

u(−x, y)n−1
s .fi.

Evaluating at 1 and ns gives

fi · Tns
(1) =

∑
x,y∈F

q2

xx+y+y=0

fi(n
−1
s )

= 0

fi · Tns
(ns) =

∑
x,y∈F

q2

xx+y+y=0

fi(nsu(−x, y)n−1
s )

=
∑

x,y∈F
q2

xx+y+y=0

fi(u
−(−x

√
ε,−yε))

eq. (3.2)
= fi(1) +

∑
x,y∈F

q2
,y �=0

xx+y+y=0

fi(hs(y
−1

√
ε
−1

)ns)
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= fi(1) + fi(ns)

⎛⎜⎜⎝ ∑
x,y∈F

q2
,y �=0

xx+y+y=0

χ̃(hs(y
−1

√
ε
−1

))

⎞⎟⎟⎠
= fi(1) + fi(ns) ·

⎧⎪⎨⎪⎩
−1 if χ is of trivial type,

0 if χ is hybrid,

0 if χ is regular,

where the last equality is obtained in precisely the same manner as in the proof of
Proposition 3.16 (cf. the computation of T 2

ns
).

Likewise, equation (3.7) implies

fi · Tns′ =
∑

y∈F
q2

y+y=0

u−(0, �y)αn−1
s .fi,

and thus we have

fi · Tns′ (1) =
∑
y∈F

q2

y+y=0

fi(u
−(0, �y)αn−1

s )

eq. (3.2)
= ζ̃(−1)χ̃(α)fi(ns)

+
∑

y∈F
q2

,y �=0

y+y=0

fi(hs(−�−1y−1
√
ε)nsu(0, �

−1y−1)αn−1
s )

= ζ̃(−1)χ̃(α)fi(ns) + fi(1)

⎛⎜⎜⎝ ∑
y∈F

q2
,y �=0

y+y=0

χ̃(hs(−y−1
√
ε))

⎞⎟⎟⎠
= ζ̃(−1)χ̃(α)fi(ns) + fi(1) ·

⎧⎪⎨⎪⎩
−1 if χ is of trivial type,

−1 if χ is hybrid,

0 if χ is regular.

fi · Tns′ (ns) =
∑
y∈F

q2

y+y=0

fi(nsu
−(0, �y)αn−1

s )

=
∑
y∈F

q2

y+y=0

χ̃(α−1)fi(1)

= 0. �
Corollary 4.2. In the notation of Definition 3.35, the right HFp

(G, I(1))-module

indGB(χ̃)
I(1) is given by the following:

(1) Assume χ is of trivial type. Then indGB(χ̃)
I(1) ∼= M(χ̃(α), χ).

(2) Assume χ is hybrid. Then indGB(χ̃)
I(1) ∼= M(χ̃(α), χ).

(3) Assume χ is regular. Then indGB(χ̃)
I(1) ∼= M(0, χ̃(α), χ).

4.2. Supersingular modules. In light of the results of the previous section, we
make the following definition:

Definition 4.3. Let χ = ζ ⊗ η be a character of the finite torus H. We define the
following characters of HFp

(G, I(1)):
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(1) Assume that χ is of trivial type. We set

Mχ,(S,∅): eχ �→ 1, Tns
�→ 0, Tns′ �→ −1;

Mχ,(∅,S′): eχ �→ 1, Tns
�→ −1, Tns′ �→ 0.

(2) Assume that χ is hybrid. We set

Mχ,(∅,S′): eχ �→ 1, Tns
�→ 0, Tns′ �→ 0;

Mχ,(∅,∅): eχ �→ 1, Tns
�→ 0, Tns′ �→ −1.

(3) Assume that χ is regular. We set

Mχ,(∅,∅): eχ �→ 1, Tns
�→ 0, Tns′ �→ 0.

The characters defined above are supersingular (as defined in Definition 3.9). We
will denote a generic supersingular character above by Mχ,J, where J = (J, J ′) is
an ordered pair as above with J ⊂ J0(χ), J

′ ⊂ J ′
0(χ). This notation is motivated

by the notation of Section 5 (cf. Definitions 5.2 and 5.3).

Note that we have Mχ,J
∼= Mχ′,J′ if and only if χ = χ′ and J = J′. The

computations of the previous sections lead to the following corollary:

Corollary 4.4. (1) Let M be a finite-dimensional supersingular HFp
(G, I(1))-

module. Then M ∼= Mχ,J for some χ and J.
(2) The functor of I(1)-invariants induces a bijection between (isomorphism

classes of) irreducible nonsupersingular representations of G and (isomor-
phism classes of) nonsupersingular finite-dimensional simple right
HFp

(G, I(1))-modules.

Proof. This follows from Theorems 3.15, 3.20, 3.34, and Corollary 4.2. The bijection
of part (2) is essentially given by Corollary 4.2; note also that indGB(χ̃) is reducible
precisely when M(χ̃(α), χ) is reducible, and one may proceed as in Théorème 4.3
of [3] to match subquotients on both sides. �

5. Representations of the finite Hecke algebras

and (pro)finite groups

5.1. Finite Hecke algebras. We first describe the Hecke algebras for the finite
groups Γ = U(2, 1)(Fq2/Fq) and Γ′ = (U(1, 1)×U(1))(Fq2/Fq), and their associated
simple modules.

Definition 5.1. We define

HΓ := EndΓ(ind
Γ
U(1)), HΓ′ := EndΓ′(indΓ

′

U′(1)),

where 1 denotes the trivial character of U or U′.

Extending functions by zero induces the injections of K- and K ′-representations
(respectively)

indΓU(1)
∼= indKI(1)(1) ↪→ c-indGI(1)(1) and indΓ

′

U′(1) ∼= indK
′

I(1)(1) ↪→ c-indGI(1)(1).

Passing to I(1)-invariants, we view the algebras HΓ and HΓ′ as subalgebras of
HFp

(G, I(1)) via

HΓ ↪→ HomK(indKI(1)(1), c-ind
G
I(1)(1)|K) ∼= HFp

(G, I(1)),

HΓ′ ↪→ HomK′(indK
′

I(1)(1), c-ind
G
I(1)(1)|K′) ∼= HFp

(G, I(1)).



78 KAROL KOZIO�L AND PENG XU

The inflation of the Bruhat decomposition from Γ (resp. Γ′) shows that K (resp.
K ′) is generated by I and ns (resp. I and ns′). Therefore, the algebra HΓ is
generated by Tns

and eχ for all characters χ of H, while HΓ′ is generated by Tns′

and eχ for all characters χ of H.

Definition 5.2. Let χ ∈ Ĥ and let S := {s} and S′ := {s′} denote the sets of
Coxeter generators for the Weyl groups associated to Γ and Γ′, respectively. We
define

J0(χ) :=

{
S if χ factors through the determinant,

∅ otherwise,

J ′
0(χ) :=

{
S′ if χs = χ,

∅ otherwise.

Definition 5.3. Let χ ∈ Ĥ.

(1) Let J ⊂ J0(χ), and let Mχ,J denote the character of HΓ given by

eχ �→ 1, eχ′ �→ 0, Tns
�→

⎧⎪⎨⎪⎩
0 if s ∈ J,

−1 if s ∈ J0(χ)− J,

0 if s �∈ J0(χ)

for χ′ �= χ.
(2) Let J ′ ⊂ J ′

0(χ), and let M ′
χ,J′ denote the character of HΓ′ given by

eχ �→ 1, eχ′ �→ 0, Tns′ �→

⎧⎪⎨⎪⎩
0 if s′ ∈ J ′,

−1 if s′ ∈ J ′
0(χ)− J ′,

0 if s′ �∈ J ′
0(χ)

for χ′ �= χ.

With these definitions in place, we arrive at the following proposition.

Proposition 5.4. Let χ ∈ Ĥ.

(1) Every simple right HΓ-module is isomorphic to a character Mχ,J with J ⊂
J0(χ).

(2) Every simple right HΓ′-module is isomorphic to a character M ′
χ,J′ with

J ′ ⊂ J ′
0(χ).

Proof. The pairs (B, (N∩K)/(N∩K1)) and (B′, (N∩K ′)/(N∩K ′
1)) form “strongly

split BN pairs of characteristic p” (cf. [13, Definition 2.20]). The result then follows
from Theorem 6.10(iii) of [13]. �

5.2. Carter–Lusztig theory. We may now begin to classify the mod-p represen-
tations of the finite groups Γ and Γ′.

Proposition 5.5. (1) The functor ρ �→ ρU induces a bijection between isomor-
phism classes of irreducible representations of Γ and isomorphism classes
of simple right HΓ-modules.

(2) The functor ρ′ �→ (ρ′)U
′
induces a bijection between isomorphism classes

of irreducible representations of Γ′ and isomorphism classes of simple right
HΓ′-modules.
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Proof. As HΓ and HΓ′ are Frobenius algebras, this follows from Proposition 1.25(ii)
of [13]. �

In light of this proposition, we make the following definition:

Definition 5.6. Let χ ∈ Ĥ.

(1) For J ⊂ J0(χ), we define ρχ,J to be the representation of Γ such that
ρUχ,J

∼= Mχ,J .

(2) For J ′ ⊂ J ′
0(χ), we define ρ′χ,J′ to be the representation of Γ′ such that

(ρ′χ,J′)U
′ ∼= M ′

χ,J′ .

Given a nonzero irreducible mod-p representation ρ of Γ, we have ρU �= {0};
Frobenius Reciprocity gives a surjection from indΓU(1) onto ρ, where 1 denotes the

trivial character of U. Since indΓU(1) decomposes as a direct sum of modules of

the form indΓB(χ), we see that ρ is actually a quotient of a parabolically induced
representation. In [14], Carter and Lusztig show how to construct irreducible quo-

tients of indΓB(χ) by using the Hecke operators eχ and Tns
(with everything holding

analogously for Γ′). These quotients are related to the representations of Definition
5.6 as follows.

Proposition 5.7. Let χ ∈ Ĥ.

(1) If χ factors through the determinant, then

ρχ,S ∼= im(1 + Tns
: indΓB(χ) → indΓB(χ)),

ρχ,∅ ∼= im(Tns
: indΓB(χ) → indΓB(χ)).

If χ does not factor through the determinant, then

ρχ,∅ ∼= im(Tns
: indΓB(χ) → indΓB(χ

s)).

(2) If χs = χ, then

ρ′χ,S′ ∼= im(1 + Tns′ : ind
Γ′

B′ (χ) → indΓ
′

B′ (χ)),

ρ′χ,∅
∼= im(Tns′ : ind

Γ′

B′ (χ) → indΓ
′

B′ (χ)).

If χs �= χ, then

ρ′χ,∅
∼= im(Tns′ : ind

Γ′

B′ (χ) → indΓ
′

B′ (χs)).

Proof. Theorem 7.1 and Corollary 7.5 of [14] imply that the images of the Hecke
operators are irreducible and inequivalent; it therefore suffices to match the two
sets of representations. Theorem 7.1 and Proposition 6.6 of [14] give the action of
HΓ and HΓ′ on the U- and U′-invariants of the image representations. The claim
then follows from Proposition 5.4 and Definition 5.6. �

We record one final result regarding the constituents of indΓ
′

B′ (χ), which will be
of use later.

Lemma 5.8. Let χ ∈ Ĥ.

(1) Assume χs = χ. Then eχ(1+Tns′ )eχ and −eχTns′ eχ are orthogonal idem-
potents and induce a splitting

indΓ
′

B′ (χ) ∼= ρ′χ,S′ ⊕ ρ′χ,∅.

Here ρ′χ,S′ is one-dimensional, and ρ′χ,∅ is a twist of the Steinberg repre-

sentation of Γ′.
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(2) Assume χs �= χ. Then the complex

0 → ρ′χs,∅ → indΓ
′

B′ (χ)
Tn

s′→ ρ′χ,∅ → 0

is exact if and only if q = p. In this case, the sequence is nonsplit.

Proof. Part (i) follows exactly as in Lemma 3.7 of [27]. For part (ii), we use an
alternate classification of irreducible representations of the group Γ′ ∼= (U(1, 1) ×
U(1))(Fq2/Fq) in terms of highest weight modules (cf. [21], [22] or [31]). In this
description, we have

ρ′χ,∅
∼= Symj0(F

2

p)⊗ · · · ⊗ Symjf−1(F
2

p)
Frf−1 ⊗ ( det
)k ⊗ ωc,

for some 0 ≤ ji ≤ p− 1, 0 ≤ k, c < q + 1, where det
 denotes the determinant map

of U(1, 1)(Fq2/Fq), and where ω : U(1)(Fq2/Fq) ↪→ F×
q2

ι→ F
×
p . The integers ji, k,

and c are determined by χ
(

a 0 0
0 δ 0
0 0 a−q

)
= a−q

∑f−1
i=0 jip

i+(1−q)kδc. Consequently, this

gives

ρ′χs,∅
∼= Symp−1−j0(F

2

p)⊗ · · · ⊗ Symp−1−jf−1(F
2

p)
Frf−1 ⊗ ( det
)1+k+

∑f−1
i=0 jip

i ⊗ ωc.

Hence,

dimFp
(ρ′χ,∅) + dimFp

(ρ′χs,∅) =

f−1∏
i=0

(ji + 1) +

f−1∏
i=0

(p− ji);

this quantity is equal to q + 1 = dimFp
(indΓ

′

B′ (χ)) if and only if q = p. Theorem 7.4

of [14] implies that for q = p, the exact sequence is nonsplit. �

Remark 5.9. By adapting the proof of Proposition 1.1 of [16], one can show that

(at least generically) indΓ′

B′ (χ) has 2f Jordan–Hölder constituents.

5.3. Injective envelopes. We begin with some general remarks. Given any irre-
ducible mod-p representation ρ of Γ, we may view it as a representation of K via
the projection K → K/K1

∼= Γ. Conversely, any smooth irreducible representation
of K must be of this form; this follows from Lemma 3(1) of [7] and the fact that
K1 is a normal pro-p subgroup of K. In light of this, we shall abuse notation and
henceforth identify smooth irreducible representations of K and those of Γ (and
analogously for K ′ and Γ′, and I and H).

We now briefly recall some results regarding socles and injective envelopes (see
[30] and [27] for details and definitions). Let K be any finite or profinite group,
and let ρ be a smooth Fp-representation of K. We let injK(ρ) and socK(ρ) de-
note the injective envelope and socle of ρ, respectively, in the category of smooth
representations of K.

Lemma 5.10. Let K ∈ {K,K ′}, let Γ ∈ {Γ,Γ′} denote the quotient of K by its
pro-p radical, and let U ∈ {U,U′} denote the image of I(1) in Γ.

Let ρ be an irreducible representation of K and let ρ ↪→ injK(ρ) be an injective
envelope of ρ. Then

(5.1) injK(ρ)|I ∼=
⊕
χ∈Ĥ

injI(χ)
⊕mρ,χ ,

where mρ,χ = dimFp
(HomH(χ, injΓ(ρ)

U)). In particular, the integers mρ,χ are

finite for every character χ of H.
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Proof. The proof is identical to the proof of Lemma 6.19 of [27]. �

Corollary 5.11. Let K ∈ {K,K ′}, and let ρ be a smooth representation of K
such that socK(ρ) is of finite length as a K-representation. Then the space of I(1)-
invariants of injK(ρ) is finite-dimensional and ρ is admissible.

Proof. We have

ρI(1) ↪→ injK(ρ)
I(1) ∼= injK(socK(ρ))

I(1);

finite-dimensionality follows from injI(χ)
I(1) ∼= χ ([27, Lemma 6.14]) and Lemma

5.10, while admissibility follows from [27, Lemma 6.18]. �

In general, it is not clear how the multiplicities in Lemma 5.10 are related,
although we may record one result in this direction:

Lemma 5.12. Let K ∈ {K,K ′}, and let ρ be a smooth irreducible representation
of K. Then we have mρ,χ = mρ,χs .

Proof. We give the proof for K = K; the other case is identical. The definition of
the numbers mρ,χ and Frobenius Reciprocity give

mρ,χ = dimFp
(HomH(χ, injΓ(ρ)

U))

= dimFp
(HomB(χ, injΓ(ρ)|B))

= dimFp
(HomΓ(ind

Γ
B(χ), injΓ(ρ))),

which is precisely the multiplicity with which ρ occurs as a composition factor of
indΓB(χ). The discussion in Sections 7.2 and 9.7 of [23] implies that indΓB(χ) and

indΓB(χ
s) have the same composition factors, and the result follows. �

Corollary 5.13. Assume q = p. We then have

injK′(ρ′χ,J′)|I ∼= injI(χ) if χs = χ and J ′ ⊂ J ′
0(χ) = S′,

injK′(ρ′χ,∅)|I ∼= injI(χ)⊕ injI(χ
s) if χs �= χ.

Proof. This follows from the decomposition (5.1), the definition of the integers mρ,χ

used in Lemma 5.12, and the description of the composition factors of indΓ
′

B′ (χ) in
Lemma 5.8. �

6. Diagrams and coefficient systems

In this section, we follow [27] closely and translate the language of coefficient
systems and diagrams to the group G. Our case is even easier than the GL2(F )
case to some extent, due mainly to the fact that the extended Bruhat-Tits building
of G coincides with the reduced Bruhat-Tits building, so that stabilizers are exactly
the parahoric subgroups. We refer to [32] throughout for definitions.

6.1. Preliminaries. Let X be the reduced Bruhat-Tits building of G. The build-
ing X is a simplicial complex of dimension 1 (that is, a tree) on which G acts.
We denote by A the apartment corresponding to the maximal F -split subtorus of
T . There exist neighboring vertices σ0 and σ′

0 in A such that stabG(σ0) = K and
stabG(σ

′
0) = K ′ (cf. [32] Section 3.1.1). The vertex σ′

0 has q+1 neighboring vertices
in X; the vertex σ0 has q3 +1 neighboring vertices and is hyperspecial (these facts
follow from Statement 3.5.4 in [32] and |Γ/B| = q3 + 1, |Γ′/B′| = q + 1). We let τ1
denote the edge from σ0 to σ′

0; we have stabG(τ1) = I.
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We let Xi, i ∈ {0, 1}, denote the set of all i-dimensional simplices of X. The tree
X has a natural G-invariant distance function, and we denote by Xe

0 (resp. Xo
0 )

the set of vertices at an even (resp. odd) distance from σ0. One easily shows that
Xe

0 and Xo
0 constitute two disjoint orbits for the action of G on X0, while G acts

transitively on X1.
Coefficient systems over C were first introduced in [29] by Schneider and Stuhler,

and used in the mod-p setting by Paškūnas in [27]. We refer to [27] for the definitions
of coefficient systems, their homology, and elementary properties (note that the
results we require from [27, Sections 5.1–5.3], hold in a more general context, and
in particular for the group G).

6.2. Diagrams. We now discuss diagrams, which are simpler and easier to handle
than coefficient systems.

Definition 6.1. A diagram is a quintuple D = (D0, D
′
0, D1, r, r

′), in which (ρ0, D0)
is a smooth representation of K, (ρ′0, D

′
0) is a smooth representation of K ′, (ρ1, D1)

is a smooth representation of I, and r ∈ HomI(D1, D0|I), r′ ∈ HomI(D1, D
′
0|I).

We represent a diagram pictorially as:

D0

D1

r

����������

r′ ��
��

��
��

��

D′
0

Note that since there are two different maximal compact subgroups to deal with,
the above definition is slightly more complicated than the one in [27]. This feature
will also play a role in upcoming arguments.

Definition 6.2. A morphism ψ between two diagrams D = (D0, D
′
0, D1, rD, r′D)

and E = (E0, E
′
0, E1, rE, r

′
E) is a triple (ψ0, ψ

′
0, ψ1), where ψ0 ∈ HomK(D0, E0),

ψ′
0 ∈ HomK′(D′

0, E
′
0), and ψ1 ∈ HomI(D1, E1), such that the squares in the follow-

ing diagram commute as I-representations:

D0
ψ0 �� E0

D1

rD

����������

r′D ���
��

��
��

�
ψ1 �� E1

rE

����������

r′E ��
��

��
��

��

D′
0

ψ′
0 �� E′

0

We say ψ is an embedding if the maps ψ0, ψ
′
0, and ψ1 are injective.

The category of diagrams with morphisms defined above is denoted DIAG.

6.3. The functors C and D. We let COEFG denote the category of G-equivariant
coefficient systems onX (cf. [27, Section 5.1]), and let V = (Vσ)σ∈X0∪X1

∈ COEFG.
In order to discuss the equivalence of COEFG and DIAG, we first observe that there
is an obvious “forgetful” functor in one direction:
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Definition 6.3. Let D be the functor from COEFG to DIAG given by:

D : COEFG → DIAG
V = (Vσ)σ �→ (Vσ0

, Vσ′
0
, Vτ1 , r

τ1
σ0
, rτ1σ′

0
)

Vσ0

= Vτ1

rτ1σ0

����������

r
τ1
σ′
0 ���

��
��

��
��

Vσ′
0

Here rτ1σ0
and rτ1σ′

0
are the restriction maps of the coefficient system V ; see [27,

Definition 5.2], for more information.
We now recall the construction of the functor C from [27]. Let

D = (D0, D
′
0, D1, r, r

′)

denote a diagram in DIAG, fixed throughout the whole discussion.

6.3.1. Representations. We will construct the vector spaces comprising C(D) as
subrepresentations of the following compactly induced representations:

c-indGK(ρ0), c-indGK′(ρ′0), c-indGI (ρ1).

For a vertex σ ∈ X0, there exists g ∈ G such that σ = g.σ0 or σ = g.σ′
0,

depending on whether σ ∈ Xe
0 or σ ∈ Xo

0 . We define

Fσ :=

{
{f ∈ c-indGK(ρ0) : supp(f) ⊂ Kg−1} if σ ∈ Xe

0 ,

{f ∈ c-indGK′(ρ′0) : supp(f) ⊂ K ′g−1} if σ ∈ Xo
0 .

For an edge τ ∈ X1, there exists g ∈ G such that τ = g.τ1. We define

Fτ := {f ∈ c-indGI (ρ1) : supp(f) ⊂ Ig−1}.
We note that these definitions are independent of the choice of g.

Given the simplex σ0 (resp. σ′
0, resp. τ1) and a vector v ∈ D0 (resp. v ∈ D′

0,
resp. v ∈ D1), we will denote by fv the unique function in Fσ0

(resp. Fσ′
0
, resp.

Fτ1) satisfying supp(fv) = K (resp. supp(fv) = K ′, resp. supp(fv) = I) and
fv(1) = v. By construction, given any simplex σ ⊂ X and f ∈ Fσ, there exists a
v ∈ D0, D

′
0 or D1 and g ∈ G such that f = g.fv.

Since each of the vector spaces Fσ are contained in a G-representation, there is
an obvious way to equip F = (Fσ)σ with a G-action, which is easily seen to satisfy
the first two points of Definition 5.3 of [27].

6.3.2. G-equivariant restriction maps. We first define the restriction maps rτ1σ0
and

rτ1σ′
0
by

rτ1σ0
(fv) := fr(v), rτ1σ′

0
(fv) := fr′(v),

where v ∈ D1. The maps rτ1σ0
and rτ1σ′

0
are well defined, and are easily seen to be

I-equivariant.
Now let τ = {σ, σ′} be an edge such that σ ∈ Xe

0 , σ′ ∈ Xo
0 . There exists

an element g which satisfies τ = g.τ1 (which implies σ = g.σ0 and σ′ = g.σ′
0);

such a choice of g is unique up to an element of I. Since g defines a vector space
isomorphism between Fτ1 and Fτ , every element of Fτ is of the form g.fv, for some



84 KAROL KOZIO�L AND PENG XU

v ∈ D1. We define rτσ and rτσ′ in the unique way which makes the diagram in the
third point of Definition 5.3 of [27] hold. Explicitly,

rτσ(g.fv) = rg.τ1g.σ0
(g.fv) := g.rτ1σ0

(fv) = g.fr(v),

rτσ′(g.fv) = rg.τ1g.σ′
0
(g.fv) := g.rτ1σ′

0
(fv) = g.fr′(v).

6.3.3. Morphisms. Let D = (D0, D
′
0, D1, rD, r′D) and E = (E0, E

′
0, E1, rE , r

′
E) be

two diagrams, and ψ = (ψ0, ψ
′
0, ψ1) a morphism between them. Let F = (Fσ)σ

and F ′ = (F ′
σ)σ be the coefficient systems associated to D and E, respectively,

constructed above.
Let σ ∈ Xe

0 , let g ∈ G be such that σ = g.σ0, and let v ∈ D0. Given g.fv ∈ Fσ,
we define the element ψσ(g.fv) ∈ F ′

σ by

ψσ(g.fv) := g.fψ0(v).

Likewise, we define

ψσ′(g.fv) := g.fψ′
0(v)

if σ′ ∈ Xo
0 , σ

′ = g.σ′
0, and v ∈ D′

0.
Let τ be an edge, let g ∈ G be such that τ = g.τ1, and let v ∈ D1. Given

g.fv ∈ Fτ , we define the element ψτ (g.fv) ∈ F ′
τ by

ψτ (g.fv) := g.fψ1(v).

Note that these maps are well defined.
Finally, we must verify that these linear maps (ψσ)σ are compatible with the

restriction maps and the action of G. Both claims follow directly from the defini-
tions.

We may now make the following definition:

Definition 6.4. Let C be the map:

C : DIAG → COEFG

D = (D0, D
′
0, D1, r, r

′) �→ F = (Fσ)σ,

where (Fσ)σ is the coefficient system defined above.

The results of the previous subsections imply that C is a bona fide functor be-
tween the two categories.

Theorem 6.5. The categories DIAG and COEFG are equivalent. The equivalence
is induced by the functors

D : COEFG → DIAG
C : DIAG → COEFG,

where C and D are defined in Definitions 6.3 and 6.4.

Proof. The proof is identical to the proof of Theorem 5.17 in [27]. �

7. Supersingular representations

7.1. Initial diagrams. Using the functor C, we may now construct coefficient
systems by defining the appropriate diagrams. In particular, to each supersingular
HFp

(G, I(1))-module we associate a diagram as follows.
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Definition 7.1. Let χ ∈ Ĥ , and let Mχ,J be a supersingular HFp
(G, I(1))-module,

with J = (J, J ′) as in Definition 4.3. We associate to Mχ,J the diagram

ρχ,J

Dχ,J :=
(
ρχ,J , ρ′χ,J′ , χ, j, j′

)
= χ

j
����������

j′
��
��

��
��

��
�

ρ′χ,J′

where j and j′ are inclusion maps, and the representations ρχ,J and ρ′χ,J′ are as in
Definition 5.6. We define

Dχ,J := C(Dχ,J)

to be the associated G-equivariant coefficient system. Finally, we let the underlying
space of the I-representation χ be spanned by a fixed vector, which we identify with

its image in ρ
I(1)
χ,J = ρUχ,J and (ρ′χ,J′)I(1) = (ρ′χ,J′)U

′
via j and j′.

Remark 7.2. We note that if Mχ,J and Dχ,J are as above, we have ρUχ,J
∼= Mχ,J|HΓ

as HΓ-modules and (ρ′χ,J′)U
′ ∼= Mχ,J|HΓ′ as HΓ′-modules.

Proposition 7.3. Let Mχ,J be a supersingular HFp
(G, I(1))-module, and let π be a

nonzero irreducible quotient of H0(X,Dχ,J), the 0-homology of the coefficient sys-

tem Dχ,J (cf. [27, Section 5.2]). Then πI(1) contains Mχ,J, and π is supersingular
as a G-representation.

Proof. In the notation of Subsection 6.3.1 and Section 5.2 of [27], we let ωσ0,fv ∈
Cor

c (X(0),Dχ,J) be the 0-chain supported on σ0, satisfying ωσ0,fv (σ0) = fv, where v
is a fixed vector spanning the underlying space of χ. By definition of the G-action,
ωσ0,fv is I(1)-invariant and the group I acts by the character χ. Let ω̄σ0,fv denote
its image in H0(X,Dχ,J). To proceed, we must show two things:

(1) The element ω̄σ0,fv generates H0(X,Dχ,J) as a G-representation.
(2) The right action of HFp

(G, I(1)) on 〈ω̄σ0,fv 〉Fp
yields an isomorphism onto

Mχ,J.

Let us assume these two claims, and let π be a nonzero irreducible quotient of
H0(X,Dχ,J). Since ω̄σ0,fv generates H0(X,Dχ,J), its image in π will be nonzero.

The second result above then shows that πI(1) contains the HFp
(G, I(1))-module

Mχ,J and the proposition follows from Corollary 4.4.
It remains to prove the two claims. For the first, we note that if ωσ′

0,fv
∈

Cor
c (X(0),Dχ,J) denotes the 0-chain supported on σ′

0 satisfying ωσ′
0,fv

(σ′
0) = fv,

then Lemma 5.6 of [27] implies ω̄σ0,fv = ω̄σ′
0,fv

in H0(X,Dχ,J). Since any ir-
reducible representation of K or K ′ is generated by its space of I(1)-invariants,
ω̄σ0,fv (resp. ω̄σ′

0,fv
) generates the image in H0(X,Dχ,J) of the space C

or
c (σ0,Dχ,J)

(resp. Cor
c (σ′

0,Dχ,J)) of 0-chains supported on σ0 (resp. σ′
0). This fact, combined

with the observation that G acts transitively on the sets Xe
0 and Xo

0 , verifies the
claim.

For the second claim, note that by Definition 5.6 and our choice of irreducible
K- and K ′-representations, we have
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〈v〉Fp
= (ρχ,J)

I(1) ∼= Mχ,J as HΓ-modules,

〈v〉Fp
= (ρ′χ,J′)I(1) ∼= M ′

χ,J′ as HΓ′ -modules,

where J = (J, J ′). We conclude from Theorem 3.7 that 〈ω̄σ0,fv 〉Fp
is equivalent to

Mχ,J as a right H(G, I(1))-module. �

7.2. Pure diagrams. In light of Proposition 7.3, it suffices to construct irreducible
quotients of H0(X,Dχ,J) to produce supersingular representations. With this in
mind, we make the following definition:

Definition 7.4. LetMχ,J be a supersingular module, and letD=(D0, D
′
0, D1, r, r

′)
be a diagram. We say D is pure with respect to Mχ,J if it satisfies the following
conditions:

(1) There exists an embedding of diagrams:

ψ : Dχ,J ↪→ D.

(2) The maps r and r′ induce isomorphisms D0|I ∼= D′
0|I ∼= D1.

(3) Either socK(D0) or socK′(D′
0) is irreducible.

The third condition above is imposed to guarantee irreducibility of certain quo-
tients of H0(X,Dχ,J). With these definitions in place, we prove the following result,
whose proof is due to Paškūnas ([27, Theorem 6.25]).

Theorem 7.5. Let Mχ,J be a supersingular module, and suppose that D is a pure
diagram with respect to Mχ,J. Then the image of the induced G-morphism between
the 0-homology

πD = im(ψ∗ : H0(X,Dχ,J) → H0(X, C(D)))

is irreducible, admissible and supersingular.

Proof. Let D = (D0, D
′
0, D1, r, r

′). To verify the result, it suffices to show πD

is irreducible, admissible and nonzero, by Proposition 7.3. Let us assume that
socK(D0) is irreducible; the case with socK′(D′

0) irreducible is the same.
Since ψ is an embedding, we have ψ∗(ω̄σ0,fv ) �= 0 (so πD �= {0}), and therefore

the sub-K-representation it generates is irreducible (by definition of Dχ,J). By
Proposition 5.10 of [27], we obtain

{0} �= 〈K.ψ∗(ω̄σ0,fv)〉Fp
⊂ socK(H0(X, C(D))|K) ∼= socK(D0),

and therefore the inclusion is an equality.
Now let π′ be a nonzero G-invariant subspace of πD. Since socK(π′|K) �= {0},

we have

{0} �= socK(π′|K)I(1) ⊂ socK(H0(X, C(D))|K)I(1)

= 〈K.ψ∗(ω̄σ0,fv)〉
I(1)

Fp
= 〈ψ∗(ω̄σ0,fv )〉Fp

,

and therefore the inclusion must be an equality. This shows ψ∗(ω̄σ0,fv ) ∈ π′, and
since this vector generates πD, we must have π′ = πD.

To show admissibility, we observe that

πD|K ⊂ H0(X, C(D))|K ∼= D0,

which implies that socK(πD|K) is simple. The claim then follows from Corollary
5.11. �
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The definition of pure diagrams does not make it clear that such diagrams exist
in general. We take up this question when q = p in the next section.

7.3. Construction of pure diagrams when q = p. We now give an application
of the formalism developed in the previous section, using results of Section 5.

Theorem 7.6. Suppose q = p. Then for every supersingular module Mχ,J, there
exists a pure diagram with respect to Mχ,J. More precisely, the corresponding initial
diagram

Dχ,J = (ρχ,J , ρ′χ,J′ , χ, j, j′)

can be embedded into a pure diagram

Eχ,J = (injK(P), injK′(P′), injI(X), j, j′)

where P = ρχ,J , P
′ is a semisimple representation of K ′ having ρ′χ,J′ as a summand,

and X is a semisimple representation of I having χ as a summand.

Proof. Using Lemma 5.12, we rewrite equation (5.1) as

(7.1) injK(ρχ,J )|I ∼=
⊕
μ=μs

injI(μ)
⊕mρχ,J ,μ ⊕

⊕
μ �=μs

(injI(μ)⊕ injI(μ
s))⊕mρχ,J ,μ ,

the sums being taken over W -orbits of characters.
We let P := ρχ,J , let X be the representation of I defined by

X :=
⊕
μ=μs

μ⊕mρχ,J ,μ ⊕
⊕
μ �=μs

(μ⊕ μs)⊕mρχ,J ,μ ,

and let P′ be a representation of K ′ of the form

P′ :=
⊕
μ=μs

(ρ′γμ
)⊕mρχ,J ,μ ⊕

⊕
μ �=μs

(ρ′γμ
)⊕mρχ,J ,μ .

Here we choose ρ′γμ
∈ {ρ′μ,S′ , ρ′μ,∅} if μ = μs and ρ′γμ

∈ {ρ′μ,∅, ρ′μs,∅} if μ �= μs; the

only stipulation we make is that ρ′χ,J′ be among the summands. By definition and

Corollary 5.13, we have injK(P)|I ∼= injK′(P′)|I ∼= injI(X). It is now evident how
to define

ψ : Dχ,J → Eχ,J,

and that Eχ,J is pure with respect to Mχ,J. �

Corollary 7.7. Assume q = p, let Mχ,J be a supersingular module, and let Eχ,J

be a pure diagram with respect to Mχ,J, constructed as in the proof of the previous
theorem. Then the image

πEχ,J
= im(ψ∗ : H0(X,Dχ,J) → H0(X, C(Eχ,J)))

is irreducible, admissible, and supersingular. Moreover, we have socK(πEχ,J
|K) ∼=

ρχ,J , and for distinct modules Mχ,J,Mχ′,J′ , the representations πEχ,J
, πEχ′,J′ are

nonisomorphic.

Proof. The first part of the corollary follows from Theorems 7.5 and 7.6. The
statement about the K-socle follows from the proof of Theorem 7.5. To prove the
last part, let us assume φ : πEχ,J

∼→ πEχ′,J′ is an isomorphism; we then obtain an
induced isomorphism

φ : socK(πEχ,J
|K)I(1)

∼→ socK(πEχ′,J′ |K)I(1).
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The proof of Theorem 7.5 shows how to equip these spaces with an action of
H

Fp
(G, I(1)), which gives

Mχ,J
∼= socK(πEχ,J

|K)I(1)
φ→ socK(πEχ′,J′ |K)I(1) ∼= Mχ′,J′ .

The claim now follows from the comments following Definition 4.3. �

Remark 7.8. Assume q = p. Given a supersingular module Mχ,J, our construction
shows that there may be many choices of pure diagram Eχ,J associated to Mχ,J. As
a consequence, if E1

χ,J and E2
χ,J are two such diagrams, we obtain two supersingular

representations πE1
χ,J

and πE2
χ,J

whose I(1)-invariants contain Mχ,J. It is not clear,

however, if these representations are isomorphic.

8. Some remarks

8.1. The case q �= p. In this section we point out the shortcomings of our method
in the case when q �= p. We assume that q = p2 for the sake of simplicity.

Let 1 denote the trivial character ofH (or, equivalently, of I), and consider the di-
agram D1,(∅,S′) = (ρ1,∅, ρ

′
1,S′ , 1, j, j′). Here ρ1,∅ is the Steinberg representation of

K, and ρ′1,S′ is the trivial character of K ′. We claim that there does not exist a pure

diagramD with respect toM1,(∅,S′) of the form (injK(P), injK′(P′), injI(X), j, j
′),

where P is a semisimple representation of K, P′ is a semisimple representation of
K ′, and X is a semisimple representation of I.

We require some preparatory facts. Let μ and μ
 be two Fp-characters of H
defined by

μ

⎛⎝a 0 0
0 δ 0
0 0 a−1

⎞⎠ = a(p
2+1)(p−1), μ


⎛⎝a 0 0
0 δ 0
0 0 a−1

⎞⎠ = a(p
2+1)(p+1).

Using the character tables computed in [20] along with a slightly modified version
of Proposition 1.1 in [16], we obtain

indΓ
′

B′ (μ)ss ∼= ρ′1,S′ ⊕ ρ′μ,∅ ⊕ ρ′μs,∅ ⊕ ρ′μ�,∅,

where the superscript “ss” denotes semisimplification. Since SU(1, 1)(Fp4/Fp2) is
conjugate to SL2(Fp2), we may modify the arguments in Section 4.2 of [27] to show
that dim

Fp
(injΓ′(ρ′1,S′)) = 3p2. Combining these two facts with Lemma 5.12 shows

that

(8.1) injK′(ρ′1,S′)|I ∼= injI(1)⊕ injI(μ)⊕ injI(μ
s).

Additionally, ρ1,∅ is injective as a representation of Γ, and therefore

(8.2) injK(ρ1,∅)|I ∼= injI(1).

Assume now that we have an embedding of diagrams D1,(∅,S′) → D, with D
pure:
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ρ1,∅ �� injK(P)

1

j
����������

j′
��
��

��
��

��
�

�� injI(X)

j
��										

j′
		
















ρ′1,S′ �� injK′(P′)

This implies in particular that ρ1,∅ is a direct summand of P (resp. ρ′1,S′ is a

direct summand of P′), and hence injK(ρ1,∅) is a direct summand of injK(P) (resp.
injK′(ρ′1,S′) is a direct summand of injK′(P′)).

Assume first that theK-representation ofD has simpleK-socle, so that P ∼= ρ1,∅.
The definition of purity gives

injI(1)⊕ injI(μ)⊕ injI(μ
s)

eq. (8.1)∼= injK′(ρ′1,S′)|I

↪→ injK′(P′)|I ∼= injK(P)|I
eq. (8.2)∼= injI(1),

which is absurd.
We may therefore assume that the K ′-representation of D has simple K ′-socle,

so that P′ ∼= ρ′1,S′ and

injK(P)|I ∼= injK′(P′)|I
eq. (8.1)∼= injI(1)⊕ injI(μ)⊕ injI(μ

s),

by the definition of purity. As injK(ρ1,∅) is a summand of injK(P), we have

injK(P/ρ1,∅)|I ∼= injK(P)/injK(ρ1,∅)|I ∼= injI(μ)⊕ injI(μ
s);

since mρχ,J ,χ ≥ 1, the only representations for which this could potentially be true
are ρμ,∅ and ρμs,∅. The dimensions of the injective envelopes of SU(2, 1)(Fp4/Fp2)
have been computed explicitly by Dordowsky in his Diplomarbeit ([17]). In par-
ticular, his results show that dimFp

(injΓ(ρμ,∅)) = dimFp
(injΓ(ρμs,∅)) = 12p6, which

implies that the number of summands in the decompositions of injK(ρμ,∅)|I and
injK(ρμs,∅)|I is 12. This verifies our claim.

8.2. Comparison with SL2(F ). In the course of defining diagrams and coefficient
systems for U(2, 1)(E/F ), there are several parallels one can draw between the
formalism we have used and the analogous formalism for the group SL2(F ). We
hope to make this connection precise here, drawing on results of Abdellatif in [1].
In this section only, the prime p may be arbitrary.

We let GS := SL2(F ), KS := SL2(oF ), and K ′
S := αSKSα

−1
S , where

αS :=

(
1 0
0 �F

)
.

Let IS := KS ∩ K ′
S be the Iwahori subgroup, and IS(1) its unique pro-p-Sylow

subgroup. Let

ws :=

(
0 −1
1 0

)
and ws′ :=

(
0 −�−1

F

�F 0

)
,
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and for r ∈ Z, let ωr denote the Fp-character of the finite torus HS := IS/IS(1)
defined by

ωr

(
a 0
0 a−1

)
= ar,

where a ∈ F×
q .

As in Section 3, we denote by HFp
(GS , IS(1)) := EndGS

(c-indGS

IS(1)
(1)) the pro-

p-Iwahori-Hecke algebra, and let Tws
(resp. Tws′ ) be the endomorphism cor-

responding by adjunction to the characteristic function of IS(1)wsIS(1) (resp.
IS(1)ws′IS(1)). For 0 ≤ r < q − 1, we define

eωr := |HS |−1
∑

h∈HS

ωr(h)Th,

where Th corresponds to the characteristic function of IS(1)hIS(1). By Theorem 1
of [34], HFp

(GS, IS(1)) is generated by Tws
,Tws′ and eωr for 0 ≤ r < q − 1.

The supersingular Hecke modules (as defined in [34]) have been classified in [2]:

Proposition 8.1. The supersingular H
Fp
(GS, IS(1))-modules are all one-dimen-

sional. They are given by:

M0 : e1 �→ 1, Tws
�→ 0, Tws′ �→ −1;

Mq−1 : e1 �→ 1, Tws
�→ −1, Tws′ �→ 0;

Mr : eωr �→ 1, Tws
�→ 0, Tws′ �→ 0,

where 0 < r < q − 1.

As is the case for U(2, 1)(E/F ), the Bruhat-Tits building XS of GS is a tree.
The action of GS partitions the vertices into two orbits (those at an even (resp.
odd) distance from the vertex corresponding to KS), and is transitive on the set of
(nonoriented) edges. Hence, the notion of a diagram is the same as in Definition
6.1, and the results of Section 6 carry over formally for the group GS . In particular,
the categories COEFGS

and DIAG are equivalent. With this analogy in mind, we
define the following diagrams.

Definition 8.2. Let Symr(F
2

p) denote the rth symmetric power of the standard
representation of SL2(Fq), viewed as a representation of KS and K ′

S by inflation.
For an f -tuple of integers (r0, r1, . . . , rf−1) with 0 ≤ ri ≤ p − 1, we denote by

Sym(r0,r1,...,rf−1)(F
2

p) the SL2(Fq)-representation

Symr0(F
2

p)⊗ Symr1(F
2

p)
Fr ⊗ · · · ⊗ Symrf−1(F

2

p)
Frf−1

.

We define:

D0 :=
(
Sym(0,0,...,0)(F

2

p), Sym(p−1,p−1,...,p−1)(F
2

p), 1, j, j′
)
,

Dq−1 :=
(
Sym(p−1,p−1,...,p−1)(F

2

p), Sym(0,0,...,0)(F
2

p), 1, j, j′
)
,

Dr :=
(
Sym(r0,r1,...,rf−1)(F

2

p), Sym(p−1−r0,p−1−r1,...,p−1−rf−1)(F
2

p), ωr, j, j′
)
,

where 0 < r =
∑f−1

i=0 rip
i < q − 1 is the p-adic expansion of r, and where j and j′

are inclusion maps.

Using the same arguments as in Section 7, one can show that given a diagram
Dr of the form above, the IS(1)-invariants of every nonzero irreducible quotient of
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H0(XS, C(Dr)) contain Mr, and therefore such a quotient must be supersingular.
Specializing to the case q = p, we obtain the following:

Proposition 8.3. Assume q = p. Let 0 ≤ r ≤ p − 1, let Mr a supersingular
HFp

(GS, IS(1))-module, and let

Dr = (Symr(F
2

p), Symp−1−r(F
2

p), ωr, j, j′)

be the associated diagram as in Definition 8.2. Then the diagram

Er = (injKS
(Symr(F

2

p)), injK′
S
(Symp−1−r(F

2

p)), injKS
(Symr(F

2

p))|IS , j, j′)

is pure with respect to Mr, where j and j′ are isomorphisms.

Theorem 8.4. Assume q = p. Let 0 ≤ r ≤ p − 1, let Mr, Dr, and Er be as in
Proposition 8.3, and let ψ : Dr → Er denote the natural embedding. Then the
representation afforded by

im(ψ∗ : H0(XS , C(Dr)) → H0(XS, C(Er)))

is irreducible, admissible and supersingular. For distinct supersingular modules
Mr,Mr′ , the resulting representations are nonisomorphic.

Proof. The proof is identical to the proofs of Propositions 7.3 and 7.5, and Corollary
7.7. �

In this way, we have constructed p irreducible supersingular representations,
corresponding to the supersingular HFp

(GS, IS(1))-modules. In particular, for F =

Qp, we recover the following classification of supersingular representations:

Theorem 8.5. Let Mr be a supersingular Hecke module for SL2(Qp), and let Dr

and Er be the diagrams constructed above. We then have

im(ψ∗ : H0(XS, C(Dr)) → H0(XS , C(Er))) ∼= πr,

where πr is the supersingular representation of SL2(Qp) defined in [1].

Proof. By Théorème 4.12 of [1] and Theorem 8.4, we must have

im(ψ∗ : H0(XS, C(Dr)) → H0(XS, C(Er))) ∼= πt

for some 0 ≤ t ≤ p− 1. By Propositions 7.4, 7.6, and 7.7 of [2] and the discussion
above, we also have

Mr ⊂ im(ψ∗ : H0(XS, C(Dr)) → H0(XS, C(Er)))
IS(1) ∼= π

IS(1)
t

∼= Mt,

and therefore t = r. �

Remark 8.6. When q �= p, the above construction fails in a manner similar to the
construction for U(2, 1)(E/F ), meaning that pure diagrams of the form (injKS

(P),

injK′
S
(P′), injIS (X), j, j′) do not always exist. One may translate the example of

the previous section to the case of SL2(F ) to produce such an example explicitly.
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