Geometric Satake, Springer correspondence, and small representations II
HTML articles powered by AMS MathViewer
- by Pramod N. Achar, Anthony Henderson and Simon Riche
- Represent. Theory 19 (2015), 94-166
- DOI: https://doi.org/10.1090/ert/465
- Published electronically: May 18, 2015
- PDF | Request permission
Abstract:
For a split reductive group scheme $\check G$ over a commutative ring $\Bbbk$ with Weyl group $W$, there is an important functor ${\mathsf {Rep}}(\check G,\Bbbk )\to {\mathsf {Rep}}(W,\Bbbk )$ defined by taking the zero weight space. We prove that the restriction of this functor to the subcategory of small representations has an alternative geometric description, in terms of the affine Grassmannian and the nilpotent cone of the Langlands dual group $G$. The translation from representation theory to geometry is via the Satake equivalence and the Springer correspondence. This generalizes the result for the $\Bbbk =\mathbb {C}$ case proved by the first two authors, and also provides a better explanation than in the earlier paper, since the current proof is uniform across all types.References
- Pramod N. Achar, Green functions via hyperbolic localization, Doc. Math. 16 (2011), 869–884. MR 2861392, DOI 10.1142/s0218202506001388
- Pramod N. Achar and Anthony Henderson, Geometric Satake, Springer correspondence and small representations, Selecta Math. (N.S.) 19 (2013), no. 4, 949–986. MR 3131493, DOI 10.1007/s00029-013-0125-7
- Pramod N. Achar, Anthony Henderson, Daniel Juteau, and Simon Riche, Weyl group actions on the Springer sheaf, Proc. Lond. Math. Soc. (3) 108 (2014), no. 6, 1501–1528. MR 3218317, DOI 10.1112/plms/pdt055
- P. Achar, A. Henderson, D. Juteau, S. Riche, Modular generalized Springer correspondence I: the general linear group, to appear in J. Eur. Math. Soc. (JEMS), arXiv:1307.2702.
- P. Achar, A. Henderson, D. Juteau, S. Riche, Modular generalized Springer correspondence II: classical groups, to appear in J. Eur. Math. Soc. (JEMS), arXiv:1404.1096.
- P. Achar, C. Mautner, Sheaves on nilpotent cones, Fourier transform, and a geometric Ringel duality, to appear in Mosc. Math. J., arXiv:1207.7044.
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- A. Beĭlinson, V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigensheaves, available at http://www.math.uchicago.edu/$\sim$mitya/langlands.html.
- Joseph Bernstein and Valery Lunts, Equivariant sheaves and functors, Lecture Notes in Mathematics, vol. 1578, Springer-Verlag, Berlin, 1994. MR 1299527, DOI 10.1007/BFb0073549
- Roman Bezrukavnikov and Michael Finkelberg, Equivariant Satake category and Kostant-Whittaker reduction, Mosc. Math. J. 8 (2008), no. 1, 39–72, 183 (English, with English and Russian summaries). MR 2422266, DOI 10.17323/1609-4514-2008-8-1-39-72
- Roman Bezrukavnikov, Michael Finkelberg, and Ivan Mirković, Equivariant homology and $K$-theory of affine Grassmannians and Toda lattices, Compos. Math. 141 (2005), no. 3, 746–768. MR 2135527, DOI 10.1112/S0010437X04001228
- J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR 0420609, DOI 10.1007/BFb0068547
- Walter Borho and Robert MacPherson, Représentations des groupes de Weyl et homologie d’intersection pour les variétés nilpotentes, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 15, 707–710 (French, with English summary). MR 618892
- Tom Braden, Hyperbolic localization of intersection cohomology, Transform. Groups 8 (2003), no. 3, 209–216. MR 1996415, DOI 10.1007/s00031-003-0606-4
- Abraham Broer, The sum of generalized exponents and Chevalley’s restriction theorem for modules of covariants, Indag. Math. (N.S.) 6 (1995), no. 4, 385–396. MR 1365182, DOI 10.1016/0019-3577(96)81754-X
- Jean-Luc Brylinski, Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques, Astérisque 140-141 (1986), 3–134, 251 (French, with English summary). Géométrie et analyse microlocales. MR 864073
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- P. Deligne, Cohomologie à support propre, Exposé XVII in Théorie des topos et cohomologie étale des schémas (SGA 4.3), Lecture Notes in Math. 305, Springer, 1973.
- P. Deligne, J. Milne, Tannakian categories, in Hodge cycles, motives, and Shimura varieties, Lecture Notes in Math. 900, Springer, 1982.
- K. A. Hardie, K. H. Kamps, and R. W. Kieboom, A homotopy 2-groupoid of a Hausdorff space, Appl. Categ. Structures 8 (2000), no. 1-2, 209–234. Papers in honour of Bernhard Banaschewski (Cape Town, 1996). MR 1785844, DOI 10.1023/A:1008758412196
- Birger Iversen, Cohomology of sheaves, Universitext, Springer-Verlag, Berlin, 1986. MR 842190, DOI 10.1007/978-3-642-82783-9
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- A. Joyal, Quasi-categories and Kan complexes, J. Pure Appl. Algebra 175 (2002), no. 1-3, 207–222. Special volume celebrating the 70th birthday of Professor Max Kelly. MR 1935979, DOI 10.1016/S0022-4049(02)00135-4
- D. Juteau, Modular Springer correspondence, decomposition matrices and basic sets, preprint, arXiv:1410.1471.
- Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. MR 1074006, DOI 10.1007/978-3-662-02661-8
- G. M. Kelly and Ross Street, Review of the elements of $2$-categories, Category Seminar (Proc. Sem., Sydney, 1972/1973) Lecture Notes in Math., Vol. 420, Springer, Berlin, 1974, pp. 75–103. MR 0357542
- Y. Liu, W. Zheng, Enhanced six operations and base change theorem for sheaves on Artin stacks, preprint, arXiv:1211.5948.
- Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659, DOI 10.1515/9781400830558
- G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), no. 2, 169–178. MR 641425, DOI 10.1016/0001-8708(81)90038-4
- G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), no. 2, 205–272. MR 732546, DOI 10.1007/BF01388564
- George Lusztig, Character sheaves. II, III, Adv. in Math. 57 (1985), no. 3, 226–265, 266–315. MR 806210, DOI 10.1016/0001-8708(85)90064-7
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- C. Mautner, Sheaf theoretic methods in modular representation theory, Ph.D. thesis, University of Texas at Austin, 2010.
- Carl Mautner, A geometric Schur functor, Selecta Math. (N.S.) 20 (2014), no. 4, 961–977. MR 3273627, DOI 10.1007/s00029-014-0147-9
- I. Mirković and K. Vilonen, Characteristic varieties of character sheaves, Invent. Math. 93 (1988), no. 2, 405–418. MR 948107, DOI 10.1007/BF01394339
- I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), no. 1, 95–143. MR 2342692, DOI 10.4007/annals.2007.166.95
- I. Mirković, M. Vybornov, Quiver varieties and Beilinson-Drinfeld Grassmannians of type A, preprint, arXiv:0712.4160.
- A. J. Power, A $2$-categorical pasting theorem, J. Algebra 129 (1990), no. 2, 439–445. MR 1040947, DOI 10.1016/0021-8693(90)90229-H
- A. J. Power, An $n$-categorical pasting theorem, Category theory (Como, 1990) Lecture Notes in Math., vol. 1488, Springer, Berlin, 1991, pp. 326–358. MR 1173022, DOI 10.1007/BFb0084230
- Mark Reeder, Zero weight spaces and the Springer correspondence, Indag. Math. (N.S.) 9 (1998), no. 3, 431–441. MR 1692153, DOI 10.1016/S0019-3577(98)80010-4
- Mark Reeder, Small modules, nilpotent orbits, and motives of reductive groups, Internat. Math. Res. Notices 20 (1998), 1079–1101. MR 1656260, DOI 10.1155/S1073792898000646
- Mark Reeder, Small representations and minuscule Richardson orbits, Int. Math. Res. Not. 5 (2002), 257–275. MR 1876935, DOI 10.1155/S107379280210506X
- Simon Riche, Wolfgang Soergel, and Geordie Williamson, Modular Koszul duality, Compos. Math. 150 (2014), no. 2, 273–332. MR 3177269, DOI 10.1112/S0010437X13007483
- Raphaël Rouquier, Categorification of ${\mathfrak {sl}}_2$ and braid groups, Trends in representation theory of algebras and related topics, Contemp. Math., vol. 406, Amer. Math. Soc., Providence, RI, 2006, pp. 137–167. MR 2258045, DOI 10.1090/conm/406/07657
Bibliographic Information
- Pramod N. Achar
- Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
- MR Author ID: 701892
- Email: pramod@math.lsu.edu
- Anthony Henderson
- Affiliation: School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
- MR Author ID: 687061
- ORCID: 0000-0002-3965-7259
- Email: anthony.henderson@sydney.edu.au
- Simon Riche
- Affiliation: Université Blaise Pascal et CNRS, Laboratoire de Mathématiques (UMR 6620), Campus universitaire des Cézeaux, F-63177 Aubière Cedex, France
- MR Author ID: 834430
- Email: simon.riche@math.univ-bpclermont.fr
- Received by editor(s): January 31, 2014
- Published electronically: May 18, 2015
- Additional Notes: The first author was supported by NSF Grant No. DMS-1001594. The second author was supported by ARC Future Fellowship Grant No. FT110100504. The third author was supported by ANR Grants No. ANR-09-JCJC-0102-01 and No. ANR-2010-BLAN-110-02.
- © Copyright 2015 American Mathematical Society
- Journal: Represent. Theory 19 (2015), 94-166
- MSC (2010): Primary 17B08, 20G05; Secondary 14M15
- DOI: https://doi.org/10.1090/ert/465
- MathSciNet review: 3347990
Dedicated: In memoriam T. A. Springer (1926–2011)