The bar involution for quantum symmetric pairs
HTML articles powered by AMS MathViewer
- by Martina Balagović and Stefan Kolb PDF
- Represent. Theory 19 (2015), 186-210 Request permission
Abstract:
We construct a bar involution for quantum symmetric pair coideal subalgebras $B_{\mathbf {c},\mathbf {s}}$ corresponding to involutive automorphisms of the second kind of symmetrizable Kac-Moody algebras. To this end we give unified presentations of these algebras in terms of generators and relations, extending previous results by G. Letzter and the second-named author. We specify precisely the set of parameters $\mathbf {c}$ for which such an intrinsic bar involution exists.References
- Shôrô Araki, On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ. 13 (1962), 1–34. MR 153782
- Martina Balagović and Stefan Kolb, Universal K-matrix for quantum symmetric pairs, preprint, \ttfamily arXiv:1507.06276v1 (2015), 52 pp.
- Huanchen Bao, Jonathan Kujawa, Yiqiang Li, and Weiqiang Wang, Geometric Schur duality of classical type, preprint, \ttfamily arXiv:1404.4000v2 (2014), 42 pp.
- A. A. Beilinson, G. Lusztig, and R. MacPherson, A geometric setting for the quantum deformation of $\textrm {GL}_n$, Duke Math. J. 61 (1990), no. 2, 655–677. MR 1074310, DOI 10.1215/S0012-7094-90-06124-1
- Huanchen Bao and Weiqiang Wang, A new approach to Kazhdan-Lusztig theory of type $B$ via quantum symmetric pairs, preprint, \ttfamily arXiv:1310.0103v1 (2013), 89 pp.
- Philippe Caldero, Éléments ad-finis de certains groupes quantiques, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 4, 327–329 (French, with English and French summaries). MR 1204298
- I. V. Cherednik, Factorizing particles on a half line, and root systems, Teoret. Mat. Fiz. 61 (1984), no. 1, 35–44 (Russian, with English summary). MR 774205
- Michael Ehrig and Catharina Stroppel, Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality, preprint, \ttfamily arXiv:1310.1972v2 (2013), 76 pp.
- Jens Carsten Jantzen, Lectures on quantum groups, Graduate Studies in Mathematics, vol. 6, American Mathematical Society, Providence, RI, 1996. MR 1359532, DOI 10.1090/gsm/006
- Anthony Joseph and Gail Letzter, Separation of variables for quantized enveloping algebras, Amer. J. Math. 116 (1994), no. 1, 127–177. MR 1262429, DOI 10.2307/2374984
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Stefan Kolb, Quantum symmetric Kac-Moody pairs, Adv. Math. 267 (2014), 395–469. MR 3269184, DOI 10.1016/j.aim.2014.08.010
- Stefan Kolb and Jasper V. Stokman, Reflection equation algebras, coideal subalgebras, and their centres, Selecta Math. (N.S.) 15 (2009), no. 4, 621–664. MR 2565052, DOI 10.1007/s00029-009-0007-1
- V. G. Kac and S. P. Wang, On automorphisms of Kac-Moody algebras and groups, Adv. Math. 92 (1992), no. 2, 129–195. MR 1155464, DOI 10.1016/0001-8708(92)90063-Q
- Gail Letzter, Symmetric pairs for quantized enveloping algebras, J. Algebra 220 (1999), no. 2, 729–767. MR 1717368, DOI 10.1006/jabr.1999.8015
- Gail Letzter, Coideal subalgebras and quantum symmetric pairs, New directions in Hopf algebras, Math. Sci. Res. Inst. Publ., vol. 43, Cambridge Univ. Press, Cambridge, 2002, pp. 117–165. MR 1913438
- Gail Letzter, Quantum symmetric pairs and their zonal spherical functions, Transform. Groups 8 (2003), no. 3, 261–292. MR 1996417, DOI 10.1007/s00031-003-0719-9
- Gail Letzter, Quantum zonal spherical functions and Macdonald polynomials, Adv. Math. 189 (2004), no. 1, 88–147. MR 2093481, DOI 10.1016/j.aim.2003.11.007
- Fernando Levstein, A classification of involutive automorphisms of an affine Kac-Moody Lie algebra, J. Algebra 114 (1988), no. 2, 489–518. MR 936987, DOI 10.1016/0021-8693(88)90308-0
- George Lusztig, Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010. Reprint of the 1994 edition. MR 2759715, DOI 10.1007/978-0-8176-4717-9
- E. K. Sklyanin, Boundary conditions for integrable quantum systems, J. Phys. A 21 (1988), no. 10, 2375–2389. MR 953215, DOI 10.1088/0305-4470/21/10/015
- Eric Twietmeyer, Real forms of $U_q({\mathfrak {g}})$, Lett. Math. Phys. 24 (1992), no. 1, 49–58. MR 1162899, DOI 10.1007/BF00430002
Additional Information
- Martina Balagović
- Affiliation: School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- MR Author ID: 919905
- Email: martina.balagovic@newcastle.ac.uk
- Stefan Kolb
- Affiliation: School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- MR Author ID: 699246
- Email: stefan.kolb@newcastle.ac.uk
- Received by editor(s): October 15, 2014
- Received by editor(s) in revised form: January 7, 2015, and September 14, 2015
- Published electronically: October 23, 2015
- Additional Notes: This research was supported by EPSRC grant EP/K025384/1
- © Copyright 2015 American Mathematical Society
- Journal: Represent. Theory 19 (2015), 186-210
- MSC (2010): Primary 17B37, 81R50
- DOI: https://doi.org/10.1090/ert/469
- MathSciNet review: 3414769