Unipotent representations as a categorical centre
HTML articles powered by AMS MathViewer
- by G. Lusztig
- Represent. Theory 19 (2015), 211-235
- DOI: https://doi.org/10.1090/ert/468
- Published electronically: October 28, 2015
- PDF | Request permission
Abstract:
Let $G(F_q)$ be the group of rational points of a split connected reductive group $G$ over the finite field $F_q$. In this paper we show that the category of representations of $G(F_q)$ which are finite direct sums of unipotent representations in a fixed two-sided cell is equivalent to the centre of a certain monoidal category of sheaves on the flag manifold of $G\times G$. We also consider a version of this for nonsplit groups.References
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Roman Bezrukavnikov, Michael Finkelberg, and Victor Ostrik, Character $D$-modules via Drinfeld center of Harish-Chandra bimodules, Invent. Math. 188 (2012), no. 3, 589–620. MR 2917178, DOI 10.1007/s00222-011-0354-3
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, DOI 10.2307/1971021
- Ben Elias and Geordie Williamson, The Hodge theory of Soergel bimodules, Ann. of Math. (2) 180 (2014), no. 3, 1089–1136. MR 3245013, DOI 10.4007/annals.2014.180.3.6
- Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581–642. MR 2183279, DOI 10.4007/annals.2005.162.581
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- George Lusztig, Character sheaves. II, III, Adv. in Math. 57 (1985), no. 3, 226–265, 266–315. MR 806210, DOI 10.1016/0001-8708(85)90064-7
- George Lusztig, Character sheaves. II, III, Adv. in Math. 57 (1985), no. 3, 226–265, 266–315. MR 806210, DOI 10.1016/0001-8708(85)90064-7
- George Lusztig, Character sheaves. IV, Adv. in Math. 59 (1986), no. 1, 1–63. MR 825086, DOI 10.1016/0001-8708(86)90036-8
- George Lusztig, Coxeter groups and unipotent representations, Astérisque 212 (1993), 191–203.
- G. Lusztig, Character sheaves on disconnected groups. VII, Represent. Theory 9 (2005), 209–266. MR 2133758, DOI 10.1090/S1088-4165-05-00278-5
- G. Lusztig, Character sheaves on disconnected groups. IX, Represent. Theory 10 (2006), 353–379. MR 2240705, DOI 10.1090/S1088-4165-06-00315-3
- G. Lusztig, Character sheaves on disconnected groups. X, Represent. Theory 13 (2009), 82–140. MR 2495562, DOI 10.1090/S1088-4165-09-00348-3
- G. Lusztig, Cells in affine Weyl groups and tensor categories, Adv. Math. 129 (1997), no. 1, 85–98. MR 1458414, DOI 10.1006/aima.1997.1645
- G. Lusztig, Hecke algebras with unequal parameters, CRM Monograph Series, vol. 18, American Mathematical Society, Providence, RI, 2003. MR 1974442, DOI 10.1090/crmm/018
- G. Lusztig, On certain varieties attached to a Weyl group element, Bull. Inst. Math. Acad. Sin. (N.S.) 6 (2011), no. 4, 377–414. MR 2907958
- G. Lusztig, Restriction of a character sheaf to conjugacy classes, Bull. Soc. Math. Roum., Tome 58 (2015), no. 3, pp. 297–309.
- G. Lusztig, Truncated convolution of character sheaves, Bull. Inst. Math. Acad. Sin. (N.S.) 10 (2015), no. 1, 1–72. MR 3309291
- G. Lusztig, Non-unipotent character sheaves as a categorical centre, arxiv: 1506.04598.
- Michael Müger, From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors, J. Pure Appl. Algebra 180 (2003), no. 1-2, 159–219. MR 1966525, DOI 10.1016/S0022-4049(02)00248-7
- Wolfgang Soergel, Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen, J. Inst. Math. Jussieu 6 (2007), no. 3, 501–525 (German, with English and German summaries). MR 2329762, DOI 10.1017/S1474748007000023
Bibliographic Information
- G. Lusztig
- Affiliation: Department of Mathematics, M.I.T., Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Email: gyuri@math.mit.edu
- Received by editor(s): December 5, 2014
- Received by editor(s) in revised form: August 26, 2015
- Published electronically: October 28, 2015
- Additional Notes: Supported in part by National Science Foundation grant 1303060.
- © Copyright 2015 American Mathematical Society
- Journal: Represent. Theory 19 (2015), 211-235
- MSC (2010): Primary 20G99
- DOI: https://doi.org/10.1090/ert/468
- MathSciNet review: 3416310