Cuspidal representations of reductive p-adic groups are relatively injective and projective
HTML articles powered by AMS MathViewer
- by Ralf Meyer PDF
- Represent. Theory 19 (2015), 290-298 Request permission
Abstract:
Cuspidal representations of a reductive $p$-adic group $G$ over a field of characteristic different from $p$ are relatively injective and projective with respect to extensions that split by a $U$-equivariant linear map for any subgroup $U$ that is compact modulo the centre. The category of smooth representations over a field whose characteristic does not divide the pro-order of $G$ is the product of the subcategories of cuspidal representations and of subrepresentations of direct sums of parabolically induced representations.References
- Ralf Meyer and Maarten Solleveld, Resolutions for representations of reductive $p$-adic groups via their buildings, J. Reine Angew. Math. 647 (2010), 115–150. MR 2729360, DOI 10.1515/CRELLE.2010.075
- David Renard, Représentations des groupes réductifs $p$-adiques, Cours Spécialisés [Specialized Courses], vol. 17, Société Mathématique de France, Paris, 2010 (French). MR 2567785
- Peter Schneider and Ulrich Stuhler, Representation theory and sheaves on the Bruhat-Tits building, Inst. Hautes Études Sci. Publ. Math. 85 (1997), 97–191. MR 1471867, DOI 10.1007/BF02699536
- Marie-France Vignéras, Représentations $l$-modulaires d’un groupe réductif $p$-adique avec $l\ne p$, Progress in Mathematics, vol. 137, Birkhäuser Boston, Inc., Boston, MA, 1996 (French, with English summary). MR 1395151
- Marie-France Vignéras, Cohomology of sheaves on the building and $R$-representations, Invent. Math. 127 (1997), no. 2, 349–373. MR 1427623, DOI 10.1007/s002220050124
Additional Information
- Ralf Meyer
- Affiliation: Mathematisches Institut, Georg-August-Universität Göttingen, Bunsenstraße 3–5, 37073 Göttingen, Germany
- MR Author ID: 624320
- ORCID: 0000-0001-9584-8028
- Email: rmeyer2@uni-goettingen.de
- Received by editor(s): April 16, 2015
- Received by editor(s) in revised form: November 9, 2015
- Published electronically: December 3, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Represent. Theory 19 (2015), 290-298
- MSC (2000): Primary 22E50
- DOI: https://doi.org/10.1090/ert/473
- MathSciNet review: 3430372