Regular functions of symplectic spherical nilpotent orbits and their quantizations
HTML articles powered by AMS MathViewer
- by Kayue Daniel Wong
- Represent. Theory 19 (2015), 333-346
- DOI: https://doi.org/10.1090/ert/474
- Published electronically: December 17, 2015
- PDF | Request permission
Abstract:
We study the ring of regular functions of classical spherical orbits $R(\mathcal {O})$ for $G = Sp(2n,\mathbb {C})$. In particular, treating $G$ as a real Lie group with maximal compact subgroup $K$, we focus on a quantization model of $\mathcal {O}$ when $\mathcal {O}$ is the nilpotent orbit $(2^{2p}1^{2q})$. With this model, we verify a conjecture by McGovern and another conjecture by Achar and Sommers related to the character formula of such orbits. Assuming the results in a preprint of Barbasch, we will also verify the Achar-Sommers conjecture for a larger class of nilpotent orbits.References
- Pramod Narahari Achar, Equivariant coherent sheaves on the nilpotent cone for complex reductive Lie groups, ProQuest LLC, Ann Arbor, MI, 2001. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2717009
- Pramod N. Achar and Eric N. Sommers, Local systems on nilpotent orbits and weighted Dynkin diagrams, Represent. Theory 6 (2002), 190–201. MR 1927953, DOI 10.1090/S1088-4165-02-00174-7
- Jeffrey Adams and Dan Barbasch, Reductive dual pair correspondence for complex groups, J. Funct. Anal. 132 (1995), no. 1, 1–42. MR 1346217, DOI 10.1006/jfan.1995.1099
- Jeffrey Adams, Jing-Song Huang, and David A. Vogan Jr., Functions on the model orbit in $E_8$, Represent. Theory 2 (1998), 224–263. MR 1628031, DOI 10.1090/S1088-4165-98-00048-X
- Dan Barbasch and David A. Vogan Jr., Unipotent representations of complex semisimple groups, Ann. of Math. (2) 121 (1985), no. 1, 41–110. MR 782556, DOI 10.2307/1971193
- Dan Barbasch, The unitary dual for complex classical Lie groups, Invent. Math. 96 (1989), no. 1, 103–176. MR 981739, DOI 10.1007/BF01393972
- D. Barbasch, Regular Functions on Covers of Nilpotent Coadjoint Orbits, http:// arxiv.org/abs/0810.0688v1, 2008
- Dan Barbasch and Pavle Pandžić, Dirac cohomology and unipotent representations of complex groups, Noncommutative geometry and global analysis, Contemp. Math., vol. 546, Amer. Math. Soc., Providence, RI, 2011, pp. 1–22. MR 2815128, DOI 10.1090/conm/546/10782
- Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication. MR 1266626
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Tanya Chmutova and Viktor Ostrik, Calculating canonical distinguished involutions in the affine Weyl groups, Experiment. Math. 11 (2002), no. 1, 99–117. MR 1960305, DOI 10.1080/10586458.2002.10504473
- Mauro Costantini, On the coordinate ring of spherical conjugacy classes, Math. Z. 264 (2010), no. 2, 327–359. MR 2574980, DOI 10.1007/s00209-008-0468-5
- Roger Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989), no. 3, 535–552. MR 985172, DOI 10.1090/S0894-0347-1989-0985172-6
- Hanspeter Kraft and Claudio Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57 (1982), no. 4, 539–602. MR 694606, DOI 10.1007/BF02565876
- M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 44 (1978), no. 1, 1–47. MR 463359, DOI 10.1007/BF01389900
- Soo Teck Lee and Chen-Bo Zhu, Degenerate principal series and local theta correspondence, Trans. Amer. Math. Soc. 350 (1998), no. 12, 5017–5046. MR 1443883, DOI 10.1090/S0002-9947-98-02036-4
- Soo Teck Lee and Chen-Bo Zhu, Degenerate principal series and local theta correspondence. II, Israel J. Math. 100 (1997), 29–59. MR 1469104, DOI 10.1007/BF02773634
- Soo Teck Lee and Chen-Bo Zhu, Degenerate principal series and local theta correspondence. III. The case of complex groups, J. Algebra 319 (2008), no. 1, 336–359. MR 2378075, DOI 10.1016/j.jalgebra.2007.06.018
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- G. Lusztig, Notes on unipotent classes, Asian J. Math. 1 (1997), no. 1, 194–207. MR 1480994, DOI 10.4310/AJM.1997.v1.n1.a7
- William M. McGovern, Rings of regular functions on nilpotent orbits and their covers, Invent. Math. 97 (1989), no. 1, 209–217. MR 999319, DOI 10.1007/BF01850661
- William M. McGovern, Completely prime maximal ideals and quantization, Mem. Amer. Math. Soc. 108 (1994), no. 519, viii+67. MR 1191608, DOI 10.1090/memo/0519
- Dmitri I. Panyushev, Some amazing properties of spherical nilpotent orbits, Math. Z. 245 (2003), no. 3, 557–580. MR 2021571, DOI 10.1007/s00209-003-0555-6
- Eric Sommers, A generalization of the Bala-Carter theorem for nilpotent orbits, Internat. Math. Res. Notices 11 (1998), 539–562. MR 1631769, DOI 10.1155/S107379289800035X
- Eric Sommers, Lusztig’s canonical quotient and generalized duality, J. Algebra 243 (2001), no. 2, 790–812. MR 1850659, DOI 10.1006/jabr.2001.8868
- David A. Vogan Jr., Associated varieties and unipotent representations, Harmonic analysis on reductive groups (Brunswick, ME, 1989) Progr. Math., vol. 101, Birkhäuser Boston, Boston, MA, 1991, pp. 315–388. MR 1168491
- David A. Vogan Jr., The method of coadjoint orbits for real reductive groups, Representation theory of Lie groups (Park City, UT, 1998) IAS/Park City Math. Ser., vol. 8, Amer. Math. Soc., Providence, RI, 2000, pp. 179–238. MR 1737729, DOI 10.1090/pcms/008/05
- K. Wong, Regular Functions of Nilpotent Orbits and Normality of their Closures, http://arxiv.org/abs/1302.6627, 2013
- Kayue Wong, Dixmier algebras on complex classical nilpotent orbits and their representation theories, ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)–Cornell University. MR 3193183
- Liang Yang, On the quantization of spherical nilpotent orbits, Trans. Amer. Math. Soc. 365 (2013), no. 12, 6499–6515. MR 3105760, DOI 10.1090/S0002-9947-2013-05925-9
Bibliographic Information
- Kayue Daniel Wong
- Affiliation: Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- MR Author ID: 1140325
- Email: makywong@ust.hk
- Received by editor(s): June 13, 2015
- Received by editor(s) in revised form: November 30, 2015
- Published electronically: December 17, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Represent. Theory 19 (2015), 333-346
- MSC (2010): Primary 17B08, 22E10
- DOI: https://doi.org/10.1090/ert/474
- MathSciNet review: 3434893