On the Jacquet Conjecture on the local converse problem for $p$-adic $\mathrm {GL}_N$
HTML articles powered by AMS MathViewer
- by Moshe Adrian, Baiying Liu, Shaun Stevens and Peng Xu PDF
- Represent. Theory 20 (2016), 1-13 Request permission
Abstract:
Based on previous results of Jiang, Nien and the third-named author, we prove that any two minimax unitarizable supercuspidals of $p$-adic $\mathrm {GL}_N$ that have the same depth and central character admit a special pair of Whittaker functions. As a corollary of our result, we prove Jacquetโs conjecture on the local converse problem for $\mathrm {GL}_N$, when $N$ is prime.References
- Moshe Adrian and Baiying Liu, Some results on simple supercuspidal representations of $\mathrm {GL}_n(F)$, J. Number Theory 160 (2016), 117โ147. MR 3425202, DOI 10.1016/j.jnt.2015.08.002
- Colin J. Bushnell, Hereditary orders, Gauss sums and supercuspidal representations of $\textrm {GL}_N$, J. Reine Angew. Math. 375/376 (1987), 184โ210. MR 882297, DOI 10.1515/crll.1987.375-376.184
- Colin J. Bushnell and Philip C. Kutzko, The admissible dual of $\textrm {GL}(N)$ via compact open subgroups, Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. MR 1204652, DOI 10.1515/9781400882496
- Colin J. Bushnell and Guy Henniart, Supercuspidal representations of $\textrm {GL}_n$: explicit Whittaker functions, J. Algebra 209 (1998), no.ย 1, 270โ287. MR 1652130, DOI 10.1006/jabr.1998.7542
- Colin J. Bushnell and Guy Henniart, The local Langlands conjecture for $\rm GL(2)$, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 335, Springer-Verlag, Berlin, 2006. MR 2234120, DOI 10.1007/3-540-31511-X
- Colin J. Bushnell and Guy Henniart, Langlands parameters for epipelagic representations of $\textrm {GL}_n$, Math. Ann. 358 (2014), no.ย 1-2, 433โ463. MR 3158004, DOI 10.1007/s00208-013-0962-x
- H. Carayol, Reprรฉsentations cuspidales du groupe linรฉaire, Ann. Sci. รcole Norm. Sup. (4) 17 (1984), no.ย 2, 191โ225 (French). MR 760676, DOI 10.24033/asens.1470
- Jiang-Ping Chen, Local factors, central characters, and representations of the general linear group over non-Archimedean local fields, ProQuest LLC, Ann Arbor, MI, 1996. Thesis (Ph.D.)โYale University. MR 2694515
- Jiang-Ping Jeff Chen, The $n\times (n-2)$ local converse theorem for $\textrm {GL}(n)$ over a $p$-adic field, J. Number Theory 120 (2006), no.ย 2, 193โ205. MR 2257542, DOI 10.1016/j.jnt.2005.12.001
- J. W. Cogdell and I. I. Piatetski-Shapiro, Converse theorems for $\textrm {GL}_n$. II, J. Reine Angew. Math. 507 (1999), 165โ188. MR 1670207, DOI 10.1515/crll.1999.507.165
- H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), no.ย 2, 367โ464. MR 701565, DOI 10.2307/2374264
- Dihua Jiang, Chufeng Nien, and Shaun Stevens, Towards the Jacquet conjecture on the local converse problem for $p$-adic $\textrm {GL}_n$, J. Eur. Math. Soc. (JEMS) 17 (2015), no.ย 4, 991โ1007. MR 3349305, DOI 10.4171/JEMS/524
- Philip Kutzko and David Manderscheid, On the supercuspidal representations of $\textrm {GL}_N,\;N$ the product of two primes, Ann. Sci. รcole Norm. Sup. (4) 23 (1990), no.ย 1, 39โ88. MR 1042387, DOI 10.24033/asens.1598
- Joshua Lansky and A. Raghuram, On the correspondence of representations between $\textrm {GL}(n)$ and division algebras, Proc. Amer. Math. Soc. 131 (2003), no.ย 5, 1641โ1648. MR 1950297, DOI 10.1090/S0002-9939-02-06918-6
- Vytautas Paskunas and Shaun Stevens, On the realization of maximal simple types and epsilon factors of pairs, Amer. J. Math. 130 (2008), no.ย 5, 1211โ1261. MR 2450207, DOI 10.1353/ajm.0.0022
- Freydoon Shahidi, Fourier transforms of intertwining operators and Plancherel measures for $\textrm {GL}(n)$, Amer. J. Math. 106 (1984), no.ย 1, 67โ111. MR 729755, DOI 10.2307/2374430
- P. Xu, A remark on the simple cuspidal representations of $\mathrm {GL}_n$. Preprint, 2013, arXiv:1310.3519v2.
Additional Information
- Moshe Adrian
- Affiliation: Department of Mathematics, Queens College, Queens, New York 11367-1597
- Email: moshe.adrian@qc.cuny.edu
- Baiying Liu
- Affiliation: School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540
- MR Author ID: 953254
- Email: liu@ias.edu
- Shaun Stevens
- Affiliation: School of Mathematics, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
- MR Author ID: 678092
- Email: Shaun.Stevens@uea.ac.uk
- Peng Xu
- Affiliation: Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
- MR Author ID: 1099916
- Email: Peng.Xu@warwick.ac.uk
- Received by editor(s): March 4, 2015
- Received by editor(s) in revised form: October 8, 2015
- Published electronically: January 27, 2016
- Additional Notes: The second author was supported in part by NSF Grant DMS-1302122, and in part by a postdoc research fund from Department of Mathematics, University of Utah
The third and fourth authors were supported by the Engineering and Physical Sciences Research Council (grant EP/H00534X/1) - © Copyright 2016 American Mathematical Society
- Journal: Represent. Theory 20 (2016), 1-13
- MSC (2010): Primary 11S70, 22E50; Secondary 11F85, 22E55
- DOI: https://doi.org/10.1090/ert/476
- MathSciNet review: 3452696