Projective normality of model varieties and related results
HTML articles powered by AMS MathViewer
- by Paolo Bravi, Jacopo Gandini and Andrea Maffei
- Represent. Theory 20 (2016), 39-93
- DOI: https://doi.org/10.1090/ert/477
- Published electronically: February 12, 2016
- PDF | Request permission
Abstract:
We prove that the multiplication of sections of globally generated line bundles on a model wonderful variety $M$ of simply connected type is always surjective. This follows by a general argument which works for every wonderful variety and reduces the study of the surjectivity for every couple of globally generated line bundles to a finite number of cases. As a consequence, the cone defined by a complete linear system over $M$ or over a closed $G$-stable subvariety of $M$ is normal. We apply these results to the study of the normality of the compactifications of model varieties in simple projective spaces and of the closures of the spherical nilpotent orbits. Then we focus on a particular case proving two specific conjectures of Adams, Huang and Vogan on an analogue of the model orbit of the group of type $\mathsf E_8$.References
- Jeffrey Adams, Jing-Song Huang, and David A. Vogan Jr., Functions on the model orbit in $E_8$, Represent. Theory 2 (1998), 224–263. MR 1628031, DOI 10.1090/S1088-4165-98-00048-X
- Dmitry Ahiezer, Equivariant completions of homogeneous algebraic varieties by homogeneous divisors, Ann. Global Anal. Geom. 1 (1983), no. 1, 49–78. MR 739893, DOI 10.1007/BF02329739
- Dan Barbasch and David A. Vogan Jr., Unipotent representations of complex semisimple groups, Ann. of Math. (2) 121 (1985), no. 1, 41–110. MR 782556, DOI 10.2307/1971193
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Models of representations of compact Lie groups, Funkcional. Anal. i Priložen. 9 (1975), no. 4, 61–62 (Russian). MR 0414792
- P. Bravi, Primitive spherical systems, Trans. Amer. Math. Soc. 365 (2013), no. 1, 361–407. MR 2984062, DOI 10.1090/S0002-9947-2012-05621-2
- Paolo Bravi and Stéphanie Cupit-Foutou, Classification of strict wonderful varieties, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 2, 641–681 (English, with English and French summaries). MR 2667789, DOI 10.5802/aif.2535
- Paolo Bravi, Jacopo Gandini, Andrea Maffei, and Alessandro Ruzzi, Normality and non-normality of group compactifications in simple projective spaces, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 6, 2435–2461 (2012) (English, with English and French summaries). MR 2976317, DOI 10.5802/aif.2679
- P. Bravi and D. Luna, An introduction to wonderful varieties with many examples of type $\rm F_4$, J. Algebra 329 (2011), 4–51. MR 2769314, DOI 10.1016/j.jalgebra.2010.01.025
- Paolo Bravi and Guido Pezzini, Wonderful varieties of type $D$, Represent. Theory 9 (2005), 578–637. MR 2183057, DOI 10.1090/S1088-4165-05-00260-8
- Michel Brion, Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math. J. 58 (1989), no. 2, 397–424 (French). MR 1016427, DOI 10.1215/S0012-7094-89-05818-3
- Michel Brion, The total coordinate ring of a wonderful variety, J. Algebra 313 (2007), no. 1, 61–99. MR 2326138, DOI 10.1016/j.jalgebra.2006.12.022
- Abraham Broer, Decomposition varieties in semisimple Lie algebras, Canad. J. Math. 50 (1998), no. 5, 929–971. MR 1650954, DOI 10.4153/CJM-1998-048-6
- Rocco Chirivì, Corrado de Concini, and Andrea Maffei, On normality of cones over symmetric varieties, Tohoku Math. J. (2) 58 (2006), no. 4, 599–616. MR 2297202
- Rocco Chirivì, Peter Littelmann, and Andrea Maffei, Equations defining symmetric varieties and affine Grassmannians, Int. Math. Res. Not. IMRN 2 (2009), 291–347. MR 2482117, DOI 10.1093/imrn/rnn132
- Rocco Chirivì and Andrea Maffei, Projective normality of complete symmetric varieties, Duke Math. J. 122 (2004), no. 1, 93–123. MR 2046808, DOI 10.1215/S0012-7094-04-12213-4
- Rocco Chirivì and Andrea Maffei, Plücker relations and spherical varieties: application to model varieties, Transform. Groups 19 (2014), no. 4, 979–997. MR 3278858, DOI 10.1007/s00031-014-9285-6
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Mauro Costantini, On the coordinate ring of spherical conjugacy classes, Math. Z. 264 (2010), no. 2, 327–359. MR 2574980, DOI 10.1007/s00209-008-0468-5
- Corrado De Concini, Normality and non normality of certain semigroups and orbit closures, Algebraic transformation groups and algebraic varieties, Encyclopaedia Math. Sci., vol. 132, Springer, Berlin, 2004, pp. 15–35. MR 2090668, DOI 10.1007/978-3-662-05652-3_{3}
- C. De Concini and C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini, 1982) Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 1–44. MR 718125, DOI 10.1007/BFb0063234
- W. A. de Graaf, Constructing representations of split semisimple Lie algebras, J. Pure Appl. Algebra 164 (2001), no. 1-2, 87–107. Effective methods in algebraic geometry (Bath, 2000). MR 1854331, DOI 10.1016/S0022-4049(00)00150-X
- J. Gandini, Spherical orbit closures in simple projective spaces and their normalizations, Transform. Groups 16 (2011), no. 1, 109–136. MR 2785497, DOI 10.1007/s00031-011-9120-2
- The GAP Group, Aachen, St Andrews, GAP–Groups, Algorithms, and Programming - a System for Computational Discrete Algebra, Version 4.5.4, 2012. http://www-gap.dcs.st-and.ac.uk/$\sim$gap
- I. M. Gel′fand and A. V. Zelevinskiĭ, Models of representations of classical groups and their hidden symmetries, Funktsional. Anal. i Prilozhen. 18 (1984), no. 3, 14–31 (Russian). MR 757246
- I. M. Gel′fand and A. V. Zelevinsky, Representation models for classical groups and their higher symmetries, Astérisque Numéro Hors Série (1985), 117–128. The mathematical heritage of Élie Cartan (Lyon, 1984). MR 837197
- Wim Hesselink, The normality of closures of orbits in a Lie algebra, Comment. Math. Helv. 54 (1979), no. 1, 105–110. MR 522033, DOI 10.1007/BF02566258
- S. Senthamarai Kannan, Projective normality of the wonderful compactification of semisimple adjoint groups, Math. Z. 239 (2002), no. 4, 673–682. MR 1902056, DOI 10.1007/s002090100319
- Misha Kapovich and John J. Millson, Structure of the tensor product semigroup, Asian J. Math. 10 (2006), no. 3, 493–539. MR 2253157, DOI 10.4310/AJM.2006.v10.n3.a2
- Friedrich Knop, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), no. 1, 153–174. MR 1311823, DOI 10.1090/S0894-0347-96-00179-8
- Friedrich Knop, Hanspeter Kraft, and Thierry Vust, The Picard group of a $G$-variety, Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem., vol. 13, Birkhäuser, Basel, 1989, pp. 77–87. MR 1044586
- Allen Knutson and Terence Tao, The honeycomb model of $\textrm {GL}_n(\textbf {C})$ tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), no. 4, 1055–1090. MR 1671451, DOI 10.1090/S0894-0347-99-00299-4
- B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809. MR 311837, DOI 10.2307/2373470
- Shrawan Kumar, Tensor product decomposition, Proceedings of the International Congress of Mathematicians. Volume III, Hindustan Book Agency, New Delhi, 2010, pp. 1226–1261. MR 2827839
- D. Luna, Toute variété magnifique est sphérique, Transform. Groups 1 (1996), no. 3, 249–258 (French, with English summary). MR 1417712, DOI 10.1007/BF02549208
- D. Luna, Variétés sphériques de type $A$, Publ. Math. Inst. Hautes Études Sci. 94 (2001), 161–226 (French). MR 1896179, DOI 10.1007/s10240-001-8194-0
- D. Luna, La variété magnifique modèle, J. Algebra 313 (2007), no. 1, 292–319 (French, with English and French summaries). MR 2326148, DOI 10.1016/j.jalgebra.2006.10.042
- Andrea Maffei, Orbits in degenerate compactifications of symmetric varieties, Transform. Groups 14 (2009), no. 1, 183–194. MR 2480858, DOI 10.1007/s00031-008-9040-y
- Dmitri I. Panyushev, Some amazing properties of spherical nilpotent orbits, Math. Z. 245 (2003), no. 3, 557–580. MR 2021571, DOI 10.1007/s00209-003-0555-6
- Guido Pezzini, Simple immersions of wonderful varieties, Math. Z. 255 (2007), no. 4, 793–812. MR 2274535, DOI 10.1007/s00209-006-0050-y
- R. W. Richardson, On orbits of algebraic groups and Lie groups, Bull. Austral. Math. Soc. 25 (1982), no. 1, 1–28. MR 651417, DOI 10.1017/S0004972700005013
- John R. Stembridge, The partial order of dominant weights, Adv. Math. 136 (1998), no. 2, 340–364. MR 1626860, DOI 10.1006/aima.1998.1736
- Dmitry A. Timashev, Homogeneous spaces and equivariant embeddings, Encyclopaedia of Mathematical Sciences, vol. 138, Springer, Heidelberg, 2011. Invariant Theory and Algebraic Transformation Groups, 8. MR 2797018, DOI 10.1007/978-3-642-18399-7
- David A. Vogan Jr., The method of coadjoint orbits for real reductive groups, Representation theory of Lie groups (Park City, UT, 1998) IAS/Park City Math. Ser., vol. 8, Amer. Math. Soc., Providence, RI, 2000, pp. 179–238. MR 1737729, DOI 10.1090/pcms/008/05
- B. Wasserman, Wonderful varieties of rank two, Transform. Groups 1 (1996), no. 4, 375–403. MR 1424449, DOI 10.1007/BF02549213
Bibliographic Information
- Paolo Bravi
- Affiliation: Dipartimento di Matematica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
- MR Author ID: 683748
- Email: bravi@mat.uniroma1.it
- Jacopo Gandini
- Affiliation: Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- MR Author ID: 932646
- Email: jacopo.gandini@sns.it
- Andrea Maffei
- Affiliation: Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy
- MR Author ID: 612173
- Email: maffei@dm.unipi.it
- Received by editor(s): February 19, 2015
- Received by editor(s) in revised form: December 29, 2015
- Published electronically: February 12, 2016
- © Copyright 2016 American Mathematical Society
- Journal: Represent. Theory 20 (2016), 39-93
- MSC (2010): Primary 14M27; Secondary 20G05
- DOI: https://doi.org/10.1090/ert/477
- MathSciNet review: 3458949