A canonical dimension estimate for non-split semisimple $p$-adic Lie groups
HTML articles powered by AMS MathViewer
- by Konstantin Ardakov and Christian Johansson
- Represent. Theory 20 (2016), 128-138
- DOI: https://doi.org/10.1090/ert/479
- Published electronically: February 18, 2016
- PDF | Request permission
Abstract:
We prove that the canonical dimension of an admissible Banach space or a locally analytic representation of an arbitrary semisimple $p$-adic Lie group is either zero or at least half the dimension of a non-zero coadjoint orbit. This extends the results of Ardakov, Wadsley, and Schmidt in the split semisimple case.References
- Konstantin Ardakov and Kenneth A. Brown, Primeness, semiprimeness and localisation in Iwasawa algebras, Trans. Amer. Math. Soc. 359 (2007), no. 4, 1499–1515. MR 2272136, DOI 10.1090/S0002-9947-06-04153-5
- Konstantin Ardakov and Simon Wadsley, On irreducible representations of compact $p$-adic analytic groups, Ann. of Math. (2) 178 (2013), no. 2, 453–557. MR 3071505, DOI 10.4007/annals.2013.178.2.3
- Konstantin Ardakov and Simon Wadsley, Verma modules for Iwasawa algebras are faithful, Münster J. Math. 7 (2014), no. 1, 5–26. MR 3271237
- N. Bourbaki, Groupes et algébres de Lie, Chapitre 1, Hermann 2007.
- J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-$p$ groups, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999. MR 1720368, DOI 10.1017/CBO9780511470882
- M. Emerton, Locally analytic vectors in representations of locally p-adic analytic groups. http://www.math.uchicago.edu/~emerton/pdffiles/analytic.pdf. To appear in Memoirs of the AMS.
- Donald S. Passman, Infinite crossed products, Pure and Applied Mathematics, vol. 135, Academic Press, Inc., Boston, MA, 1989. MR 979094
- Tobias Schmidt, Auslander regularity of $p$-adic distribution algebras, Represent. Theory 12 (2008), 37–57. MR 2375595, DOI 10.1090/S1088-4165-08-00323-3
- Tobias Schmidt, On locally analytic Beilinson-Bernstein localization and the canonical dimension, Math. Z. 275 (2013), no. 3-4, 793–833. MR 3127038, DOI 10.1007/s00209-013-1161-x
- T. Schmidt, M. Strauch, Dimensions of some locally analytic representations, Represent. Theory 20 (2016), 14–38. DOI: http://dx.doi.org/10.1090/ert/475.
- P. Schneider and J. Teitelbaum, Banach space representations and Iwasawa theory, Israel J. Math. 127 (2002), 359–380. MR 1900706, DOI 10.1007/BF02784538
- Peter Schneider and Jeremy Teitelbaum, Algebras of $p$-adic distributions and admissible representations, Invent. Math. 153 (2003), no. 1, 145–196. MR 1990669, DOI 10.1007/s00222-002-0284-1
Bibliographic Information
- Konstantin Ardakov
- Affiliation: School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Email: ardakov@maths.ox.ac.uk
- Christian Johansson
- Affiliation: School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540
- MR Author ID: 1031168
- Email: johansson@math.ias.edu
- Received by editor(s): July 6, 2015
- Received by editor(s) in revised form: December 31, 2015
- Published electronically: February 18, 2016
- © Copyright 2016 American Mathematical Society
- Journal: Represent. Theory 20 (2016), 128-138
- MSC (2010): Primary 11F85, 16S99, 22E50
- DOI: https://doi.org/10.1090/ert/479
- MathSciNet review: 3461051