## A canonical dimension estimate for non-split semisimple $p$-adic Lie groups

HTML articles powered by AMS MathViewer

- by Konstantin Ardakov and Christian Johansson PDF
- Represent. Theory
**20**(2016), 128-138 Request permission

## Abstract:

We prove that the canonical dimension of an admissible Banach space or a locally analytic representation of an arbitrary semisimple $p$-adic Lie group is either zero or at least half the dimension of a non-zero coadjoint orbit. This extends the results of Ardakov, Wadsley, and Schmidt in the split semisimple case.## References

- Konstantin Ardakov and Kenneth A. Brown,
*Primeness, semiprimeness and localisation in Iwasawa algebras*, Trans. Amer. Math. Soc.**359**(2007), no. 4, 1499–1515. MR**2272136**, DOI 10.1090/S0002-9947-06-04153-5 - Konstantin Ardakov and Simon Wadsley,
*On irreducible representations of compact $p$-adic analytic groups*, Ann. of Math. (2)**178**(2013), no. 2, 453–557. MR**3071505**, DOI 10.4007/annals.2013.178.2.3 - Konstantin Ardakov and Simon Wadsley,
*Verma modules for Iwasawa algebras are faithful*, Münster J. Math.**7**(2014), no. 1, 5–26. MR**3271237** - N. Bourbaki,
*Groupes et algébres de Lie*, Chapitre 1, Hermann 2007. - J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal,
*Analytic pro-$p$ groups*, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999. MR**1720368**, DOI 10.1017/CBO9780511470882 - M. Emerton,
*Locally analytic vectors in representations of locally p-adic analytic groups*. http://www.math.uchicago.edu/~emerton/pdffiles/analytic.pdf. To appear in Memoirs of the AMS. - Donald S. Passman,
*Infinite crossed products*, Pure and Applied Mathematics, vol. 135, Academic Press, Inc., Boston, MA, 1989. MR**979094** - Tobias Schmidt,
*Auslander regularity of $p$-adic distribution algebras*, Represent. Theory**12**(2008), 37–57. MR**2375595**, DOI 10.1090/S1088-4165-08-00323-3 - Tobias Schmidt,
*On locally analytic Beilinson-Bernstein localization and the canonical dimension*, Math. Z.**275**(2013), no. 3-4, 793–833. MR**3127038**, DOI 10.1007/s00209-013-1161-x - T. Schmidt, M. Strauch,
*Dimensions of some locally analytic representations*, Represent. Theory**20**(2016), 14–38. DOI: http://dx.doi.org/10.1090/ert/475. - P. Schneider and J. Teitelbaum,
*Banach space representations and Iwasawa theory*, Israel J. Math.**127**(2002), 359–380. MR**1900706**, DOI 10.1007/BF02784538 - Peter Schneider and Jeremy Teitelbaum,
*Algebras of $p$-adic distributions and admissible representations*, Invent. Math.**153**(2003), no. 1, 145–196. MR**1990669**, DOI 10.1007/s00222-002-0284-1

## Additional Information

**Konstantin Ardakov**- Affiliation: School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Email: ardakov@maths.ox.ac.uk
**Christian Johansson**- Affiliation: School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540
- MR Author ID: 1031168
- Email: johansson@math.ias.edu
- Received by editor(s): July 6, 2015
- Received by editor(s) in revised form: December 31, 2015
- Published electronically: February 18, 2016
- © Copyright 2016 American Mathematical Society
- Journal: Represent. Theory
**20**(2016), 128-138 - MSC (2010): Primary 11F85, 16S99, 22E50
- DOI: https://doi.org/10.1090/ert/479
- MathSciNet review: 3461051