Skip to Main Content

Representation Theory

Published by the American Mathematical Society, the Representation Theory (ERT) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-4165

The 2020 MCQ for Representation Theory is 0.7.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On reducibility of $p$-adic principal series representations of $p$-adic groups
HTML articles powered by AMS MathViewer

by Dubravka Ban and Joseph Hundley PDF
Represent. Theory 20 (2016), 249-262 Request permission

Abstract:

We study the continuous principal series representations of split connected reductive $p$-adic groups over $p$-adic fields. We show that such representations are irreducible when the inducing character lies in a certain cone. This is consistent with a conjecture of Schneider regarding reducibility in the semisimple case.
References
  • Laurent Berger and Christophe Breuil, Sur quelques représentations potentiellement cristallines de $\textrm {GL}_2(\mathbf Q_p)$, Astérisque 330 (2010), 155–211 (French, with English and French summaries). MR 2642406
  • Pierre Colmez, Représentations de $\textrm {GL}_2(\mathbf Q_p)$ et $(\phi ,\Gamma )$-modules, Astérisque 330 (2010), 281–509 (French, with English and French summaries). MR 2642409
  • Schémas en groupes. III: Structure des schémas en groupes réductifs, Lecture Notes in Mathematics, Vol. 153, Springer-Verlag, Berlin-New York, 1970 (French). Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3); Dirigé par M. Demazure et A. Grothendieck. MR 0274460
  • H. Frommer, The locally analytic principal series of split reductive groups, Preprintreihe SFB 478, Münster, Heft 265 (2003); available at http://3dsp.unimuenster.de/ wwwmath.uni-muenster.de/sfb/about/publ/frommer01.html.
  • James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773, DOI 10.1007/978-1-4684-9443-3
  • Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
  • T. Y. Lam, A first course in noncommutative rings, 2nd ed., Graduate Texts in Mathematics, vol. 131, Springer-Verlag, New York, 2001. MR 1838439, DOI 10.1007/978-1-4419-8616-0
  • Michel Lazard, Groupes analytiques $p$-adiques, Inst. Hautes Études Sci. Publ. Math. 26 (1965), 389–603 (French). MR 209286
  • Sascha Orlik and Matthias Strauch, On the irreducibility of locally analytic principal series representations, Represent. Theory 14 (2010), 713–746. MR 2738585, DOI 10.1090/S1088-4165-2010-00387-8
  • Peter Schneider, $p$-adic Lie groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 344, Springer, Heidelberg, 2011. MR 2810332, DOI 10.1007/978-3-642-21147-8
  • Peter Schneider, Continuous representation theory of $p$-adic Lie groups, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1261–1282. MR 2275644
  • P. Schneider and J. Teitelbaum, Banach space representations and Iwasawa theory, Israel J. Math. 127 (2002), 359–380. MR 1900706, DOI 10.1007/BF02784538
  • T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713, DOI 10.1007/978-0-8176-4840-4
Similar Articles
  • Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 22E50, 11S80
  • Retrieve articles in all journals with MSC (2010): 22E50, 11S80
Additional Information
  • Dubravka Ban
  • Affiliation: Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901
  • MR Author ID: 658785
  • Email: dban@siu.edu
  • Joseph Hundley
  • Affiliation: 244 Mathematics Building, University at Buffalo, Buffalo, New York 14260-2900
  • MR Author ID: 746477
  • Email: jahundle@buffalo.edu
  • Received by editor(s): February 20, 2016
  • Received by editor(s) in revised form: June 7, 2016
  • Published electronically: August 17, 2016
  • Additional Notes: This research was supported by NSA grant H98230-15-1-0234
  • © Copyright 2016 American Mathematical Society
  • Journal: Represent. Theory 20 (2016), 249-262
  • MSC (2010): Primary 22E50, 11S80
  • DOI: https://doi.org/10.1090/ert/485
  • MathSciNet review: 3537231