On reducibility of $p$-adic principal series representations of $p$-adic groups
HTML articles powered by AMS MathViewer
- by Dubravka Ban and Joseph Hundley
- Represent. Theory 20 (2016), 249-262
- DOI: https://doi.org/10.1090/ert/485
- Published electronically: August 17, 2016
- PDF | Request permission
Abstract:
We study the continuous principal series representations of split connected reductive $p$-adic groups over $p$-adic fields. We show that such representations are irreducible when the inducing character lies in a certain cone. This is consistent with a conjecture of Schneider regarding reducibility in the semisimple case.References
- Laurent Berger and Christophe Breuil, Sur quelques représentations potentiellement cristallines de $\textrm {GL}_2(\mathbf Q_p)$, Astérisque 330 (2010), 155–211 (French, with English and French summaries). MR 2642406
- Pierre Colmez, Représentations de $\textrm {GL}_2(\mathbf Q_p)$ et $(\phi ,\Gamma )$-modules, Astérisque 330 (2010), 281–509 (French, with English and French summaries). MR 2642409
- Schémas en groupes. III: Structure des schémas en groupes réductifs, Lecture Notes in Mathematics, Vol. 153, Springer-Verlag, Berlin-New York, 1970 (French). Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3); Dirigé par M. Demazure et A. Grothendieck. MR 0274460
- H. Frommer, The locally analytic principal series of split reductive groups, Preprintreihe SFB 478, Münster, Heft 265 (2003); available at http://3dsp.unimuenster.de/ wwwmath.uni-muenster.de/sfb/about/publ/frommer01.html.
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773, DOI 10.1007/978-1-4684-9443-3
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- T. Y. Lam, A first course in noncommutative rings, 2nd ed., Graduate Texts in Mathematics, vol. 131, Springer-Verlag, New York, 2001. MR 1838439, DOI 10.1007/978-1-4419-8616-0
- Michel Lazard, Groupes analytiques $p$-adiques, Inst. Hautes Études Sci. Publ. Math. 26 (1965), 389–603 (French). MR 209286
- Sascha Orlik and Matthias Strauch, On the irreducibility of locally analytic principal series representations, Represent. Theory 14 (2010), 713–746. MR 2738585, DOI 10.1090/S1088-4165-2010-00387-8
- Peter Schneider, $p$-adic Lie groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 344, Springer, Heidelberg, 2011. MR 2810332, DOI 10.1007/978-3-642-21147-8
- Peter Schneider, Continuous representation theory of $p$-adic Lie groups, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1261–1282. MR 2275644
- P. Schneider and J. Teitelbaum, Banach space representations and Iwasawa theory, Israel J. Math. 127 (2002), 359–380. MR 1900706, DOI 10.1007/BF02784538
- T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713, DOI 10.1007/978-0-8176-4840-4
Bibliographic Information
- Dubravka Ban
- Affiliation: Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901
- MR Author ID: 658785
- Email: dban@siu.edu
- Joseph Hundley
- Affiliation: 244 Mathematics Building, University at Buffalo, Buffalo, New York 14260-2900
- MR Author ID: 746477
- Email: jahundle@buffalo.edu
- Received by editor(s): February 20, 2016
- Received by editor(s) in revised form: June 7, 2016
- Published electronically: August 17, 2016
- Additional Notes: This research was supported by NSA grant H98230-15-1-0234
- © Copyright 2016 American Mathematical Society
- Journal: Represent. Theory 20 (2016), 249-262
- MSC (2010): Primary 22E50, 11S80
- DOI: https://doi.org/10.1090/ert/485
- MathSciNet review: 3537231