Balanced semisimple filtrations for tilting modules
HTML articles powered by AMS MathViewer
- by Amit Hazi
- Represent. Theory 21 (2017), 4-19
- DOI: https://doi.org/10.1090/ert/495
- Published electronically: March 8, 2017
- PDF | Request permission
Abstract:
Let $U_l$ be a quantum group at an $l$th root of unity, obtained via Lusztigโs divided powers construction. Many indecomposable tilting modules for $U_l$ have been shown to have what we call a balanced semisimple filtration, or a Loewy series whose semisimple layers are symmetric about some middle layer. The existence of such filtrations suggests a remarkably straightforward algorithm for calculating these characters if the irreducible characters are already known. We first show that the results of this algorithm agree with Soergelโs character formula for the regular indecomposable tilting modules. We then show that these balanced semisimple filtrations really do exist for these tilting modules.References
- Henning Haahr Andersen, An inversion formula for the Kazhdan-Lusztig polynomials for affine Weyl groups, Adv. in Math. 60 (1986), no.ย 2, 125โ153. MR 840301, DOI 10.1016/S0001-8708(86)80008-1
- Henning Haahr Andersen and Masaharu Kaneda, Loewy series of modules for the first Frobenius kernel in a reductive algebraic group, Proc. London Math. Soc. (3) 59 (1989), no.ย 1, 74โ98. MR 997252, DOI 10.1112/plms/s3-59.1.74
- Henning Haahr Andersen and Masaharu Kaneda, Rigidity of tilting modules, Mosc. Math. J. 11 (2011), no.ย 1, 1โ39, 181 (English, with English and Russian summaries). MR 2808210, DOI 10.17323/1609-4514-2011-11-1-1-39
- Henning Haahr Andersen, Patrick Polo, and Ke Xin Wen, Representations of quantum algebras, Invent. Math. 104 (1991), no.ย 1, 1โ59. MR 1094046, DOI 10.1007/BF01245066
- Henning Haahr Andersen and Daniel Tubbenhauer, Diagram categories for $u_q$-tilting modules at roots of unity, Transformation Groups (2016), 1โ61.
- C. Bowman, S. R. Doty, and S. Martin, Decomposition of tensor products of modular irreducible representations for $\textrm {SL}_3$, Int. Electron. J. Algebra 9 (2011), 177โ219. With an appendix by C. M. Ringel. MR 2753767
- C. Bowman, S. R. Doty, and S. Martin, Decomposition of tensor products of modular irreducible representations for $\textrm {SL}_3$: the $p\geq 5$ case, Int. Electron. J. Algebra 17 (2015), 105โ138. MR 3310689, DOI 10.24330/ieja.266215
- Vinay V. Deodhar, Duality in parabolic set up for questions in Kazhdan-Lusztig theory, J. Algebra 142 (1991), no.ย 1, 201โ209. MR 1125213, DOI 10.1016/0021-8693(91)90225-W
- Amit Hazi, Radically filtered quasi-hereditary algebras and rigidity of tilting modules, Math. Proc. Camb. Phil. Soc., in press. DOI 10.1017/S0305004116001006
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- Masaki Kashiwara and Toshiyuki Tanisaki, Kazhdan-Lusztig conjecture for affine Lie algebras with negative level, Duke Math. J. 77 (1995), no.ย 1, 21โ62. MR 1317626, DOI 10.1215/S0012-7094-95-07702-3
- Masaki Kashiwara and Toshiyuki Tanisaki, Kazhdan-Lusztig conjecture for affine Lie algebras with negative level. II. Nonintegral case, Duke Math. J. 84 (1996), no.ย 3, 771โ813. MR 1408544, DOI 10.1215/S0012-7094-96-08424-0
- Masaki Kashiwara and Toshiyuki Tanisaki, Parabolic Kazhdan-Lusztig polynomials and Schubert varieties, J. Algebra 249 (2002), no.ย 2, 306โ325. MR 1901161, DOI 10.1006/jabr.2000.8690
- D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. I, II, J. Amer. Math. Soc. 6 (1993), no.ย 4, 905โ947, 949โ1011. MR 1186962, DOI 10.1090/S0894-0347-1993-99999-X
- D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. III, J. Amer. Math. Soc. 7 (1994), no.ย 2, 335โ381. MR 1239506, DOI 10.1090/S0894-0347-1994-1239506-X
- D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. IV, J. Amer. Math. Soc. 7 (1994), no.ย 2, 383โ453. MR 1239507, DOI 10.1090/S0894-0347-1994-1239507-1
- G. Lusztig, Modular representations and quantum groups, Classical groups and related topics (Beijing, 1987) Contemp. Math., vol. 82, Amer. Math. Soc., Providence, RI, 1989, pp.ย 59โ77. MR 982278, DOI 10.1090/conm/082/982278
- George Lusztig, Some problems in the representation theory of finite Chevalley groups, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp.ย 313โ317. MR 604598
- George Lusztig, Monodromic systems on affine flag manifolds, Proc. Roy. Soc. London Ser. A 445 (1994), no.ย 1923, 231โ246. MR 1276910, DOI 10.1098/rspa.1994.0058
- Simon Riche and Geordie Williamson, Tilting modules and the p-canonical basis, January 2016, arXiv:math.RT/1512.08296v2.
- Wolfgang Soergel, Kazhdan-Lusztig polynomials and a combinatoric[s] for tilting modules, Represent. Theory 1 (1997), 83โ114. MR 1444322, DOI 10.1090/S1088-4165-97-00021-6
- Wolfgang Soergel, Character formulas for tilting modules over Kac-Moody algebras, Represent. Theory 2 (1998), 432โ448. MR 1663141, DOI 10.1090/S1088-4165-98-00057-0
Bibliographic Information
- Amit Hazi
- Affiliation: Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WB, United Kingdom
- Email: A.Hazi@dpmms.cam.ac.uk
- Received by editor(s): October 11, 2016
- Received by editor(s) in revised form: February 15, 2017
- Published electronically: March 8, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Represent. Theory 21 (2017), 4-19
- MSC (2010): Primary 20G42
- DOI: https://doi.org/10.1090/ert/495
- MathSciNet review: 3620676