Positivity in $T$-equivariant $K$-theory of flag varieties associated to Kac-Moody groups II
HTML articles powered by AMS MathViewer
- by Seth Baldwin and Shrawan Kumar PDF
- Represent. Theory 21 (2017), 35-60 Request permission
Abstract:
We prove sign-alternation of the structure constants in the basis of the structure sheaves of opposite Schubert varieties in the torus-equivariant Grothendieck group of coherent sheaves on the flag varieties $G/P$ associated to an arbitrary symmetrizable Kac-Moody group $G$, where $P$ is any parabolic subgroup. This generalizes the work of Anderson-Griffeth-Miller from the finite case to the general Kac-Moody case, and affirmatively answers a conjecture of Lam-Schilling-Shimozono regarding the signs of the structure constants in the case of the affine Grassmannian.References
- Dave Anderson, Stephen Griffeth, and Ezra Miller, Positivity and Kleiman transversality in equivariant $K$-theory of homogeneous spaces, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 1, 57â84. MR 2735076, DOI 10.4171/JEMS/244
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, BirkhÀuser Boston, Inc., Boston, MA, 1997. MR 1433132
- Olivier Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001. MR 1841091, DOI 10.1007/978-1-4757-5406-3
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- RenĂ©e Elkik, SingularitĂ©s rationnelles et dĂ©formations, Invent. Math. 47 (1978), no. 2, 139â147 (French). MR 501926, DOI 10.1007/BF01578068
- HélÚne Esnault and Eckart Viehweg, Lectures on vanishing theorems, DMV Seminar, vol. 20, BirkhÀuser Verlag, Basel, 1992. MR 1193913, DOI 10.1007/978-3-0348-8600-0
- William Fulton and Piotr Pragacz, Schubert varieties and degeneracy loci, Lecture Notes in Mathematics, vol. 1689, Springer-Verlag, Berlin, 1998. Appendix J by the authors in collaboration with I. Ciocan-Fontanine. MR 1639468, DOI 10.1007/BFb0096380
- Roger Godement, Topologie algébrique et théorie des faisceaux, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1252, Hermann, Paris, 1958 (French). Publ. Math. Univ. Strasbourg. No. 13. MR 0102797
- William Graham and Shrawan Kumar, On positivity in $T$-equivariant $K$-theory of flag varieties, Int. Math. Res. Not. IMRN , posted on (2008), Art. ID rnn 093, 43. MR 2439542, DOI 10.1093/imrn/rnn093
- Stephen Griffeth and Arun Ram, Affine Hecke algebras and the Schubert calculus, European J. Combin. 25 (2004), no. 8, 1263â1283. MR 2095481, DOI 10.1016/j.ejc.2003.10.012
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Srikanth B. Iyengar, Graham J. Leuschke, Anton Leykin, Claudia Miller, Ezra Miller, Anurag K. Singh, and Uli Walther, Twenty-four hours of local cohomology, Graduate Studies in Mathematics, vol. 87, American Mathematical Society, Providence, RI, 2007. MR 2355715, DOI 10.1090/gsm/087
- M. Kashiwara, The flag manifold of Kac-Moody Lie algebra, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 161â190. MR 1463702
- Masaki Kashiwara and Mark Shimozono, Equivariant $K$-theory of affine flag manifolds and affine Grothendieck polynomials, Duke Math. J. 148 (2009), no. 3, 501â538. MR 2527324, DOI 10.1215/00127094-2009-032
- George Kempf, The Grothendieck-Cousin complex of an induced representation, Adv. in Math. 29 (1978), no. 3, 310â396. MR 509802, DOI 10.1016/0001-8708(78)90021-X
- JĂĄnos KollĂĄr and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959, DOI 10.1017/CBO9780511662560
- S. Kumar, Positivity in T-equivariant K-theory of flag varieties associated to Kac-Moody groups. Preprint (2012). (To appear in J. Euro. Math. Soc.)
- Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, BirkhÀuser Boston, Inc., Boston, MA, 2002. MR 1923198, DOI 10.1007/978-1-4612-0105-2
- Shrawan Kumar and Karl Schwede, Richardson varieties have Kawamata log terminal singularities, Int. Math. Res. Not. IMRN 3 (2014), 842â864. MR 3163569, DOI 10.1093/imrn/rns241
- Thomas Lam, Anne Schilling, and Mark Shimozono, $K$-theory Schubert calculus of the affine Grassmannian, Compos. Math. 146 (2010), no. 4, 811â852. MR 2660675, DOI 10.1112/S0010437X09004539
- Igor R. Shafarevich, Basic algebraic geometry. 1, Varieties in projective space, third ed., Springer-Verlag, Berlin, 2013. Translated from the 1988 Russian edition and with notes by Miles Reid.
- J. P. Serre. Espaces fibrés algébriques, Séminaire C. Chevalley, E.N.S., 1958.
- The Stacks Project, http://stacks.math.columbia.edu/ Accessed June 15, 2016.
Additional Information
- Seth Baldwin
- Affiliation: Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599-3250
- Email: seth.baldwin@unc.edu
- Shrawan Kumar
- Affiliation: Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599-3250
- MR Author ID: 219351
- Email: shrawan@email.unc.edu
- Received by editor(s): December 4, 2016
- Published electronically: March 24, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Represent. Theory 21 (2017), 35-60
- MSC (2010): Primary 19L47; Secondary 14M15
- DOI: https://doi.org/10.1090/ert/494
- MathSciNet review: 3627147