Skip to Main Content

Representation Theory

Published by the American Mathematical Society since 1997, this electronic-only journal is devoted to research in representation theory and seeks to maintain a high standard for exposition as well as for mathematical content. All articles are freely available to all readers and with no publishing fees for authors.

ISSN 1088-4165

The 2024 MCQ for Representation Theory is 0.71.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Face functors for KLR algebras
HTML articles powered by AMS MathViewer

by Peter J. McNamara and Peter Tingley
Represent. Theory 21 (2017), 106-131
DOI: https://doi.org/10.1090/ert/496
Published electronically: July 12, 2017

Abstract:

Simple representations of KLR algebras can be used to realize the infinity crystal for the corresponding symmetrizable Kac-Moody algebra. It was recently shown that, in finite and affine types, certain sub-categories of “cuspidal” representations realize crystals for sub-Kac-Moody algebras. Here we put that observation on a firmer categorical footing by exhibiting a corresponding functor between the category of representations of the KLR algebra for the sub-Kac-Moody algebra and the category of cuspidal representations of the original KLR algebra.
References
Similar Articles
  • Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 17B37
  • Retrieve articles in all journals with MSC (2010): 17B37
Bibliographic Information
  • Peter J. McNamara
  • Affiliation: School of Mathematics and Physics, University of Queensland, St Lucia, QLD, Australia
  • MR Author ID: 791816
  • Email: maths@petermc.net
  • Peter Tingley
  • Affiliation: Department of Mathematics and Statistics, Loyola University, Chicago, Illinois 60660
  • MR Author ID: 679482
  • Email: ptingley@luc.edu
  • Received by editor(s): February 12, 2016
  • Received by editor(s) in revised form: October 3, 2016, March 13, 2017, and May 1, 2017
  • Published electronically: July 12, 2017
  • © Copyright 2017 American Mathematical Society
  • Journal: Represent. Theory 21 (2017), 106-131
  • MSC (2010): Primary 17B37
  • DOI: https://doi.org/10.1090/ert/496
  • MathSciNet review: 3670026