The Peterson variety and the wonderful compactification
HTML articles powered by AMS MathViewer
- by Ana Bălibanu
- Represent. Theory 21 (2017), 132-150
- DOI: https://doi.org/10.1090/ert/499
- Published electronically: July 20, 2017
- PDF | Request permission
Abstract:
We look at the centralizer in a semisimple algebraic group $G$ of a regular nilpotent element $e\in \text {Lie}(G)$ and show that its closure in the wonderful compactification is isomorphic to the Peterson variety. It follows that the closure in the wonderful compactification of the centralizer $G^x$ of any regular element $x\in \text {Lie}(G)$ is isomorphic to the closure of a general $G^x$-orbit in the flag variety. We also give a description of the $G^e$-orbit structure of the Peterson variety.References
- Ivan Arzhantsev, Ulrich Derenthal, Jürgen Hausen, and Antonio Laface, Cox rings, Cambridge Studies in Advanced Mathematics, vol. 144, Cambridge University Press, Cambridge, 2015. MR 3307753
- Michel Brion, The total coordinate ring of a wonderful variety, J. Algebra 313 (2007), no. 1, 61–99. MR 2326138, DOI 10.1016/j.jalgebra.2006.12.022
- Romuald Dabrowski, On normality of the closure of a generic torus orbit in $G/P$, Pacific J. Math. 172 (1996), no. 2, 321–330. MR 1386621, DOI 10.2140/pjm.1996.172.321
- C. De Concini and C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini, 1982) Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 1–44. MR 718125, DOI 10.1007/BFb0063234
- François Digne and Jean Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991. MR 1118841, DOI 10.1017/CBO9781139172417
- S. Evens and B. F. Jones, On the wonderful compactification, ArXiv e-prints (2008).
- W. Fulton and J. Harris, Representation theory, Graduate Texts in Mathematics, Springer, New York, 2004. DOI 10.1007/978-1-4612-00979-9.
- V. Ginzburg, Loop Grassmannian cohomology, the principal nilpotent and Kostant theorem, ArXiv e-prints (1998), math/9803141v2.
- M. Harada and J. Tymoczko, Poset pinball, GKM-compatible subspaces, and Hessenberg varieties, ArXiv e-prints (2010), math/1007.2750v1.
- Erik Insko and Alexander Yong, Patch ideals and Peterson varieties, Transform. Groups 17 (2012), no. 4, 1011–1036. MR 3000479, DOI 10.1007/s00031-012-9201-x
- Bertram Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032. MR 114875, DOI 10.2307/2372999
- Bertram Kostant, Lie group representations on polynomial rings, American Journal of Mathematics 85 (1963).
- Bertram Kostant, Flag manifold quantum cohomology, the Toda lattice, and the representation with highest weight, Selecta Mathematica 2 (1996).
- Johan Martens and Michael Thaddeus, Compactifications of reductive groups as moduli stacks of bundles, Compos. Math. 152 (2016), no. 1, 62–98. MR 3453388, DOI 10.1112/S0010437X15007484
- Konstanze Rietsch, Quantum cohomology rings of Grassmannians and total positivity, Duke Math. J. 110 (2001), no. 3, 523–553. MR 1869115, DOI 10.1215/S0012-7094-01-11033-8
- Konstanze Rietsch, Totally positive Toeplitz matrices and quantum cohomology of partial flag varieties, J. Amer. Math. Soc. 16 (2003), no. 2, 363–392. MR 1949164, DOI 10.1090/S0894-0347-02-00412-5
- Alexander Schmitt (ed.), Affine flag manifolds and principal bundles, Trends in Mathematics, Birkhäuser/Springer Basel AG, Basel, 2010. MR 3014134, DOI 10.1007/978-3-0346-0288-4
- Julianna S. Tymoczko, Paving Hessenberg varieties by affines, Selecta Math. (N.S.) 13 (2007), no. 2, 353–367. MR 2361098, DOI 10.1007/s00029-007-0038-4
- E. B. Vinberg, On reductive algebraic semigroups, Lie groups and Lie algebras: E. B. Dynkin’s Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 169, Amer. Math. Soc., Providence, RI, 1995, pp. 145–182. MR 1364458, DOI 10.1090/trans2/169/10
Bibliographic Information
- Ana Bălibanu
- Affiliation: Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago, IL 60637
- Email: ana@math.uchicago.edu
- Received by editor(s): May 30, 2016
- Received by editor(s) in revised form: February 23, 2017
- Published electronically: July 20, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Represent. Theory 21 (2017), 132-150
- MSC (2010): Primary 20G05
- DOI: https://doi.org/10.1090/ert/499
- MathSciNet review: 3673527