Constructing tame supercuspidal representations
HTML articles powered by AMS MathViewer
- by Jeffrey Hakim
- Represent. Theory 22 (2018), 45-86
- DOI: https://doi.org/10.1090/ert/514
- Published electronically: June 27, 2018
- PDF | Request permission
Previous version of record: Original version posted June 27, 2018
Corrected version of record: Current version corrects a math font error introduced by the publisher.
Abstract:
A new approach to Jiu-Kang Yu’s construction of tame supercuspidal representations of $p$-adic reductive groups is presented. Connections with the theory of cuspidal representations of finite groups of Lie-type and the theory of distinguished representations are also discussed.References
- Jeffrey D. Adler, Refined anisotropic $K$-types and supercuspidal representations, Pacific J. Math. 185 (1998), no. 1, 1–32. MR 1653184, DOI 10.2140/pjm.1998.185.1
- Jeffrey D. Adler and Loren Spice, Good product expansions for tame elements of $p$-adic groups, Int. Math. Res. Pap. IMRP 1 (2008), Art. ID rp. 003, 95. MR 2431235
- Colin J. Bushnell and Philip C. Kutzko, The admissible dual of $\textrm {GL}(N)$ via compact open subgroups, Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. MR 1204652, DOI 10.1515/9781400882496
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251 (French). MR 327923, DOI 10.1007/BF02715544
- Stephen DeBacker, Parameterizing conjugacy classes of maximal unramified tori via Bruhat-Tits theory, Michigan Math. J. 54 (2006), no. 1, 157–178. MR 2214792, DOI 10.1307/mmj/1144437442
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, DOI 10.2307/1971021
- Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin-New York, 1982. MR 654325, DOI 10.1007/978-3-540-38955-2
- Stephen DeBacker and Paul J. Sally Jr., Germs, characters, and the Fourier transforms of nilpotent orbits, The mathematical legacy of Harish-Chandra (Baltimore, MD, 1998) Proc. Sympos. Pure Math., vol. 68, Amer. Math. Soc., Providence, RI, 2000, pp. 191–221. MR 1767897, DOI 10.1090/pspum/068/1767897
- Paul Gérardin, Weil representations associated to finite fields, J. Algebra 46 (1977), no. 1, 54–101. MR 460477, DOI 10.1016/0021-8693(77)90394-5
- Jeffrey Hakim, Distinguished cuspidal representations over $p$-adic and finite fields, preprint, https://arxiv.org/abs/1703.08861, (2017).
- Jeffrey Hakim and Joshua Lansky, Distinguished tame supercuspidal representations and odd orthogonal periods, Represent. Theory 16 (2012), 276–316. MR 2925798, DOI 10.1090/S1088-4165-2012-00418-6
- Jeffrey Hakim and Fiona Murnaghan, Distinguished tame supercuspidal representations, Int. Math. Res. Pap. IMRP 2 (2008), Art. ID rpn005, 166. MR 2431732
- Roger E. Howe, On the character of Weil’s representation, Trans. Amer. Math. Soc. 177 (1973), 287–298. MR 316633, DOI 10.1090/S0002-9947-1973-0316633-5
- Roger E. Howe, Tamely ramified supercuspidal representations of $\textrm {Gl}_{n}$, Pacific J. Math. 73 (1977), no. 2, 437–460. MR 492087, DOI 10.2140/pjm.1977.73.437
- Tasho Kaletha, Regular supercuspidal representations, preprint, v2, https://arxiv. org/abs/1602.03144, (2017).
- Robert E. Kottwitz, Rational conjugacy classes in reductive groups, Duke Math. J. 49 (1982), no. 4, 785–806. MR 683003
- R. P. Langlands, Stable conjugacy: definitions and lemmas, Canadian J. Math. 31 (1979), no. 4, 700–725. MR 540901, DOI 10.4153/CJM-1979-069-2
- George Lusztig, Symmetric spaces over a finite field, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 57–81. MR 1106911, DOI 10.1007/978-0-8176-4576-2_{3}
- Allen Moy and Gopal Prasad, Unrefined minimal $K$-types for $p$-adic groups, Invent. Math. 116 (1994), no. 1-3, 393–408. MR 1253198, DOI 10.1007/BF01231566
- Allen Moy and Gopal Prasad, Jacquet functors and unrefined minimal $K$-types, Comment. Math. Helv. 71 (1996), no. 1, 98–121. MR 1371680, DOI 10.1007/BF02566411
- Fiona Murnaghan, Parametrization of tame supercuspidal representations, On certain $L$-functions, Clay Math. Proc., vol. 13, Amer. Math. Soc., Providence, RI, 2011, pp. 439–469. MR 2767524
- Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen. MR 1278263
- Gopal Prasad, Galois-fixed points in the Bruhat-Tits building of a reductive group, Bull. Soc. Math. France 129 (2001), no. 2, 169–174 (English, with English and French summaries). MR 1871292, DOI 10.24033/bsmf.2391
- Guy Rousseau, Immeubles des groupes réducitifs sur les corps locaux, Publications Mathématiques d’Orsay, No. 221-77.68, Université Paris XI, U.E.R. Mathématique, Orsay, 1977 (French). Thèse de doctorat. MR 0491992
- T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713, DOI 10.1007/978-0-8176-4840-4
- Robert Steinberg, Torsion in reductive groups, Advances in Math. 15 (1975), 63–92. MR 354892, DOI 10.1016/0001-8708(75)90125-5
- J. Tits, Algebraic and abstract simple groups, Ann. of Math. (2) 80 (1964), 313–329. MR 164968, DOI 10.2307/1970394
- J. Tits, Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 33–62. MR 0224710
- J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–69. MR 546588
- Jiu-Kang Yu, Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001), no. 3, 579–622. MR 1824988, DOI 10.1090/S0894-0347-01-00363-0
- Jiu-Kang Yu, Bruhat-Tits theory and buildings, Ottawa lectures on admissible representations of reductive $p$-adic groups, Fields Inst. Monogr., vol. 26, Amer. Math. Soc., Providence, RI, 2009, pp. 53–77. MR 2508720, DOI 10.1090/fim/026/02
Bibliographic Information
- Jeffrey Hakim
- Affiliation: Department of Mathematics and Statistics, American University, Washington, DC
- MR Author ID: 272088
- Email: jhakim@american.edu
- Received by editor(s): April 11, 2017
- Received by editor(s) in revised form: November 22, 2017, and May 15, 2018
- Published electronically: June 27, 2018
- © Copyright 2018 American Mathematical Society
- Journal: Represent. Theory 22 (2018), 45-86
- MSC (2010): Primary 11F70, 22E50
- DOI: https://doi.org/10.1090/ert/514
- MathSciNet review: 3817964