Skip to Main Content

Representation Theory

Published by the American Mathematical Society since 1997, this electronic-only journal is devoted to research in representation theory and seeks to maintain a high standard for exposition as well as for mathematical content. All articles are freely available to all readers and with no publishing fees for authors.

ISSN 1088-4165

The 2020 MCQ for Representation Theory is 0.71.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


On pro-$p$-Iwahori invariants of $R$-representations of reductive $p$-adic groups
HTML articles powered by AMS MathViewer

by N. Abe, G. Henniart and M.-F. Vignéras
Represent. Theory 22 (2018), 119-159
Published electronically: October 15, 2018


Let $F$ be a locally compact field with residue characteristic $p$, and let $\mathbf {G}$ be a connected reductive $F$-group. Let $\mathcal {U}$ be a pro-$p$ Iwahori subgroup of $G = \mathbf {G}(F)$. Fix a commutative ring $R$. If $\pi$ is a smooth $R[G]$-representation, the space of invariants $\pi ^{\mathcal {U}}$ is a right module over the Hecke algebra $\mathcal {H}$ of $\mathcal {U}$ in $G$.

Let $P$ be a parabolic subgroup of $G$ with a Levi decomposition $P = MN$ adapted to $\mathcal {U}$. We complement a previous investigation of Ollivier-Vignéras on the relation between taking $\mathcal {U}$-invariants and various functor like $\operatorname {Ind}_P^G$ and right and left adjoints. More precisely the authors’ previous work with Herzig introduced representations $I_G(P,\sigma ,Q)$ where $\sigma$ is a smooth representation of $M$ extending, trivially on $N$, to a larger parabolic subgroup $P(\sigma )$, and $Q$ is a parabolic subgroup between $P$ and $P(\sigma )$. Here we relate $I_G(P,\sigma ,Q)^{\mathcal {U}}$ to an analogously defined $\mathcal {H}$-module $I_\mathcal {H}(P,\sigma ^{\mathcal {U}_M},Q)$, where $\mathcal {U}_M = \mathcal {U}\cap M$ and $\sigma ^{\mathcal {U}_M}$ is seen as a module over the Hecke algebra $\mathcal {H}_M$ of $\mathcal {U}_M$ in $M$. In the reverse direction, if $\mathcal {V}$ is a right $\mathcal {H}_M$-module, we relate $I_\mathcal {H}(P,\mathcal {V},Q)\otimes \operatorname {c-Ind}_\mathcal {U}^G\mathbf {1}$ to $I_G(P,\mathcal {V}\otimes _{\mathcal {H}_M}\operatorname {c-Ind}_{\mathcal {U}_M}^M\mathbf {1},Q)$. As an application we prove that if $R$ is an algebraically closed field of characteristic $p$, and $\pi$ is an irreducible admissible representation of $G$, then the contragredient of $\pi$ is $0$ unless $\pi$ has finite dimension.

  • N. Abe, Modulo $p$ parabolic induction of pro-$p$-Iwahori Hecke algebra, J. Reine Angew. Math., DOI:10.1515/crelle-2016-0043.
  • N. Abe, Parabolic inductions for pro-$p$-Iwahori Hecke algebras, arXiv:1612.01312.
  • N. Abe, G. Henniart, F. Herzig, and M.-F. Vignéras, A classification of irreducible admissible $\textrm {mod}\, p$ representations of $p$-adic reductive groups, J. Amer. Math. Soc. 30 (2017), no. 2, 495–559. MR 3600042, DOI 10.1090/jams/862
  • N. Abe, G. Henniart, and M.-F. Vignéras, Modulo $p$ representations of reductive $p$-adic groups: Functorial properties, to appear in Transaction of AMS.
  • F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251 (French). MR 327923, DOI 10.1007/BF02715544
  • Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
  • Elmar Grosse-Klönne, On special representations of $p$-adic reductive groups, Duke Math. J. 163 (2014), no. 12, 2179–2216. MR 3263032, DOI 10.1215/00127094-2785697
  • Jan Kohlhaase, Smooth duality in natural characteristic, Adv. Math. 317 (2017), 1–49. MR 3682662, DOI 10.1016/j.aim.2017.06.038
  • Tony Ly, Représentations de Steinberg modulo $p$ pour un groupe réductif sur un corps local, Pacific J. Math. 277 (2015), no. 2, 425–462 (French, with English and French summaries). MR 3402357, DOI 10.2140/pjm.2015.277.425
  • R. Ollivier and M.-F. Vignéras, Parabolic induction in characteristic $p$, arXiv:1703.04921.
  • Marie-France Vignéras, Représentations modulaires de $\textrm {GL}(2,F)$ en caractéristique $l,\;F$ corps $p$-adique, $p\neq l$, Compositio Math. 72 (1989), no. 1, 33–66 (French). MR 1026328
  • Marie-France Vignéras, Représentations irréductibles de $\textrm {GL}(2,F)$ modulo $p$, $L$-functions and Galois representations, London Math. Soc. Lecture Note Ser., vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 548–563 (French, with English summary). MR 2392364, DOI 10.1017/CBO9780511721267.015
  • Marie-France Vignéras, The pro-$p$-Iwahori-Hecke algebra of a reductive $p$-adic group, II, Münster J. Math. 7 (2014), no. 1, 363–379. MR 3271250
  • Marie-France Vignéras, The pro-$p$ Iwahori Hecke algebra of a reductive $p$-adic group, V (parabolic induction), Pacific J. Math. 279 (2015), no. 1-2, 499–529. MR 3437789, DOI 10.2140/pjm.2015.279.499
  • Marie-France Vignéras, The pro-$p$ Iwahori Hecke algebra of a reductive $p$-adic group, V (parabolic induction), Pacific J. Math. 279 (2015), no. 1-2, 499–529. MR 3437789, DOI 10.2140/pjm.2015.279.499
  • Marie-France Vigneras, The pro-$p$-Iwahori Hecke algebra of a reductive $p$-adic group I, Compos. Math. 152 (2016), no. 4, 693–753. MR 3484112, DOI 10.1112/S0010437X15007666
Similar Articles
  • Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 20C08, 11F70
  • Retrieve articles in all journals with MSC (2010): 20C08, 11F70
Bibliographic Information
  • N. Abe
  • Affiliation: Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan
  • MR Author ID: 858099
  • Email:
  • G. Henniart
  • Affiliation: Université de Paris-Sud, Laboratoire de Mathématiques d’Orsay, Orsay cedex F-91405 France; CNRS, Orsay cedex F-91405 France
  • MR Author ID: 84385
  • Email:
  • M.-F. Vignéras
  • Affiliation: Institut de Mathématiques de Jussieu, 175 rue du Chevaleret, Paris 75013 France
  • Email:
  • Received by editor(s): March 14, 2018
  • Received by editor(s) in revised form: June 17, 2018
  • Published electronically: October 15, 2018
  • Additional Notes: The first-named author was supported by JSPS KAKENHI Grant Number 26707001.
  • © Copyright 2018 American Mathematical Society
  • Journal: Represent. Theory 22 (2018), 119-159
  • MSC (2010): Primary 20C08; Secondary 11F70
  • DOI:
  • MathSciNet review: 3864023