Jordan decompositions of cocenters of reductive $p$-adic groups
HTML articles powered by AMS MathViewer
- by Xuhua He and Ju-Lee Kim
- Represent. Theory 23 (2019), 294-324
- DOI: https://doi.org/10.1090/ert/528
- Published electronically: September 16, 2019
- PDF | Request permission
Abstract:
Cocenters of Hecke algebras $\mathcal {H}$ play an important role in studying mod $\ell$ or $\mathbb C$ harmonic analysis on connected $p$-adic reductive groups. On the other hand, the depth $r$ Hecke algebra $\mathcal {H}_{r^+}$ is well suited to study depth $r$ smooth representations. In this paper, we study depth $r$ rigid cocenters $\overline {\mathcal {H}}^\mathrm {rig}_{r^+}$ of a connected reductive $p$-adic group over rings of characteristic zero or $\ell \neq p$. More precisely, under some mild hypotheses, we establish a Jordan decomposition of the depth $r$ rigid cocenter, hence find an explicit basis of $\overline {\mathcal {H}}^\mathrm {rig}_{r^+}$.References
- Jeffrey D. Adler, Refined anisotropic $K$-types and supercuspidal representations, Pacific J. Math. 185 (1998), no. 1, 1–32. MR 1653184, DOI 10.2140/pjm.1998.185.1
- Jeffrey D. Adler and Stephen DeBacker, Some applications of Bruhat-Tits theory to harmonic analysis on the Lie algebra of a reductive $p$-adic group, Michigan Math. J. 50 (2002), no. 2, 263–286. MR 1914065, DOI 10.1307/mmj/1028575734
- Jeffrey D. Adler and Loren Spice, Good product expansions for tame elements of $p$-adic groups, Int. Math. Res. Pap. IMRP 1 (2008), Art. ID rp. 003, 95. MR 2431235
- Dan Barbasch and Allen Moy, A new proof of the Howe conjecture, J. Amer. Math. Soc. 13 (2000), no. 3, 639–650. MR 1758757, DOI 10.1090/S0894-0347-00-00336-2
- J. Bernstein, P. Deligne, and D. Kazhdan, Trace Paley-Wiener theorem for reductive $p$-adic groups, J. Analyse Math. 47 (1986), 180–192. MR 874050, DOI 10.1007/BF02792538
- D. Ciubotaru and X. He, Cocenters of $p$-adic groups, III: Elliptic cocenter and rigid cocenter, arXiv:1703.00378.
- Laurent Clozel, Orbital integrals on $p$-adic groups: a proof of the Howe conjecture, Ann. of Math. (2) 129 (1989), no. 2, 237–251. MR 986793, DOI 10.2307/1971447
- Stephen DeBacker, Parametrizing nilpotent orbits via Bruhat-Tits theory, Ann. of Math. (2) 156 (2002), no. 1, 295–332. MR 1935848, DOI 10.2307/3597191
- Stephen Debacker, Homogeneity results for invariant distributions of a reductive $p$-adic group, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 3, 391–422 (English, with English and French summaries). MR 1914003, DOI 10.1016/S0012-9593(02)01094-7
- J. Fintzen, Tame tori in $p$-adic groups and good semisimple elements, arXiv:1801.04955.
- Thomas C. Hales, A simple definition of transfer factors for unramified groups, Representation theory of groups and algebras, Contemp. Math., vol. 145, Amer. Math. Soc., Providence, RI, 1993, pp. 109–134. MR 1216184, DOI 10.1090/conm/145/1216184
- Xuhua He, Cocenters of $p$-adic groups, I: Newton decomposition, Forum Math. Pi 6 (2018), e2, 27. MR 3780377, DOI 10.1017/fmp.2018.1
- Xuhua He, Cocenter of $p$-adic groups, II: Induction map, Adv. Math. 345 (2019), 972–997. MR 3903646, DOI 10.1016/j.aim.2019.01.039
- Roger Howe, Two conjectures about reductive $p$-adic groups, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 377–380. MR 0338278
- H. Jacquet and R. P. Langlands, Automorphic forms on $\textrm {GL}(2)$, Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 0401654, DOI 10.1007/BFb0058988
- David Kazhdan, Cuspidal geometry of $p$-adic groups, J. Analyse Math. 47 (1986), 1–36. MR 874042, DOI 10.1007/BF02792530
- Ju-Lee Kim, Supercuspidal representations: an exhaustion theorem, J. Amer. Math. Soc. 20 (2007), no. 2, 273–320. MR 2276772, DOI 10.1090/S0894-0347-06-00544-3
- Ju-Lee Kim and Fiona Murnaghan, Character expansions and unrefined minimal $K$-types, Amer. J. Math. 125 (2003), no. 6, 1199–1234. MR 2018660, DOI 10.1353/ajm.2003.0043
- Ju-Lee Kim and Fiona Murnaghan, K-types and $\Gamma$-asymptotic expansions, J. Reine Angew. Math. 592 (2006), 189–236. MR 2222734, DOI 10.1515/CRELLE.2006.027
- George J. McNinch, Nilpotent orbits over ground fields of good characteristic, Math. Ann. 329 (2004), no. 1, 49–85. MR 2052869, DOI 10.1007/s00208-004-0510-9
- Allen Moy and Gopal Prasad, Unrefined minimal $K$-types for $p$-adic groups, Invent. Math. 116 (1994), no. 1-3, 393–408. MR 1253198, DOI 10.1007/BF01231566
- Allen Moy and Gopal Prasad, Jacquet functors and unrefined minimal $K$-types, Comment. Math. Helv. 71 (1996), no. 1, 98–121. MR 1371680, DOI 10.1007/BF02566411
- Gopal Prasad, Galois-fixed points in the Bruhat-Tits building of a reductive group, Bull. Soc. Math. France 129 (2001), no. 2, 169–174 (English, with English and French summaries). MR 1871292, DOI 10.24033/bsmf.2391
- R. Ranga Rao, Orbital integrals in reductive groups, Ann. of Math. (2) 96 (1972), 505–510. MR 320232, DOI 10.2307/1970822
- Guy Rousseau, Immeubles des groupes réducitifs sur les corps locaux, Publications Mathématiques d’Orsay, No. 221-77.68, Université Paris XI, U.E.R. Mathématique, Orsay, 1977 (French). Thèse de doctorat. MR 0491992
- Loren Spice, Topological Jordan decompositions, J. Algebra 319 (2008), no. 8, 3141–3163. MR 2408311, DOI 10.1016/j.jalgebra.2007.11.004
Bibliographic Information
- Xuhua He
- Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742
- Address at time of publication: The Institute of Mathematical Sciences and Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
- MR Author ID: 733194
- Email: xuhuahe@math.cuhk.edu.hk
- Ju-Lee Kim
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139
- MR Author ID: 653104
- Email: juleekim@mit.edu
- Received by editor(s): October 17, 2017
- Received by editor(s) in revised form: October 30, 2018
- Published electronically: September 16, 2019
- Additional Notes: The first author was partially supported by NSF DMS-1463852 and DMS-1128155 (from IAS)
- © Copyright 2019 American Mathematical Society
- Journal: Represent. Theory 23 (2019), 294-324
- MSC (2010): Primary 22E50; Secondary 11F70
- DOI: https://doi.org/10.1090/ert/528
- MathSciNet review: 4007169