Propriétés de maximalité concernant une représentation définie par Lusztig
HTML articles powered by AMS MathViewer
- by J.-L. Waldspurger
- Represent. Theory 23 (2019), 379-438
- DOI: https://doi.org/10.1090/ert/533
- Published electronically: September 30, 2019
- PDF | Request permission
Abstract:
Let $\lambda$ be a symplectic partition, denote $Jord^{bp}(\lambda )$ the set of even positive integers which appear in $\lambda$, and let a map $\epsilon :Jord^{bp}(\lambda ) \to \{\pm 1\}$. The generalized Springer’s correspondence associates to $(\lambda ,\epsilon )$ an irreducible representation $\rho (\lambda ,\epsilon )$ of some Weyl group. We can also define a representation $\underline {\rho }(\lambda ,\epsilon )$ of the same Weyl group, in general reducible. Roughly speaking, $\rho (\lambda ,\epsilon )$ is the representation of the Weyl group in the top cohomology group of some variety and $\underline {\rho }(\lambda ,\epsilon )$ is the representation in the sum of all the cohomology groups of the same variety. The representation $\underline {\rho }$ decomposes as a direct sum of $\rho (\lambda ’,\epsilon ’)$ with some multiplicities, where $(\lambda ’,\epsilon ’)$ describes the set of pairs similar to $(\lambda ,\epsilon )$. It is well know that $(\lambda ,\epsilon )$ appears in this decomposition with multiplicity one and is minimal in this decomposition. That is, if $(\lambda ’,\epsilon ’)$ appears, we have $\lambda ’>\lambda$ or $(\lambda ’,\epsilon ’)=(\lambda ,\epsilon )$. Assuming that $\lambda$ has only even parts, we prove that there exists also a maximal pair $(\lambda ^{max},\epsilon ^{max})$. That is, $(\lambda ^{max},\epsilon ^{max})$ appears with positive multiplicity (in fact one) and, if $(\lambda ’,\epsilon ’)$ appears, we have $\lambda ^{max}>\lambda ’$ or $(\lambda ’,\epsilon ’)=(\lambda ^{max},\epsilon ^{max})$.References
- George Lusztig, Character sheaves. V, Adv. in Math. 61 (1986), no. 2, 103–155. MR 849848, DOI 10.1016/0001-8708(86)90071-X
- G. Lusztig, Cuspidal local systems and graded Hecke algebras. III, Represent. Theory 6 (2002), 202–242. MR 1927954, DOI 10.1090/S1088-4165-02-00172-3
- I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979. MR 553598
- Toshiaki Shoji, Green functions associated to complex reflection groups, J. Algebra 245 (2001), no. 2, 650–694. MR 1863896, DOI 10.1006/jabr.2001.8898
- Jean-Loup Waldspurger, Représentations de réduction unipotente pour $\textrm {SO}(2n+1)$: quelques conséquences d’un article de Lusztig, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 803–910 (French). MR 2058629
Bibliographic Information
- J.-L. Waldspurger
- Affiliation: CNRS-Institut de Mathématiques de Jussieu-PRG, 4 place Jussieu, Boîte courrier 247, 75252 Paris cedex 05
- MR Author ID: 180090
- Email: jean-loup.waldspurger@imj-prg.fr
- Received by editor(s): June 8, 2018
- Received by editor(s) in revised form: August 22, 2019
- Published electronically: September 30, 2019
- © Copyright 2019 American Mathematical Society
- Journal: Represent. Theory 23 (2019), 379-438
- MSC (2010): Primary 05E10, 20C30
- DOI: https://doi.org/10.1090/ert/533
- MathSciNet review: 4013117