## Propriétés de maximalité concernant une représentation définie par Lusztig

HTML articles powered by AMS MathViewer

- by J.-L. Waldspurger
- Represent. Theory
**23**(2019), 379-438 - DOI: https://doi.org/10.1090/ert/533
- Published electronically: September 30, 2019
- PDF | Request permission

## Abstract:

Let $\lambda$ be a symplectic partition, denote $Jord^{bp}(\lambda )$ the set of even positive integers which appear in $\lambda$, and let a map $\epsilon :Jord^{bp}(\lambda ) \to \{\pm 1\}$. The generalized Springer’s correspondence associates to $(\lambda ,\epsilon )$ an irreducible representation $\rho (\lambda ,\epsilon )$ of some Weyl group. We can also define a representation $\underline {\rho }(\lambda ,\epsilon )$ of the same Weyl group, in general reducible. Roughly speaking, $\rho (\lambda ,\epsilon )$ is the representation of the Weyl group in the top cohomology group of some variety and $\underline {\rho }(\lambda ,\epsilon )$ is the representation in the sum of all the cohomology groups of the same variety. The representation $\underline {\rho }$ decomposes as a direct sum of $\rho (\lambda ’,\epsilon ’)$ with some multiplicities, where $(\lambda ’,\epsilon ’)$ describes the set of pairs similar to $(\lambda ,\epsilon )$. It is well know that $(\lambda ,\epsilon )$ appears in this decomposition with multiplicity one and is minimal in this decomposition. That is, if $(\lambda ’,\epsilon ’)$ appears, we have $\lambda ’>\lambda$ or $(\lambda ’,\epsilon ’)=(\lambda ,\epsilon )$. Assuming that $\lambda$ has only even parts, we prove that there exists also a maximal pair $(\lambda ^{max},\epsilon ^{max})$. That is, $(\lambda ^{max},\epsilon ^{max})$ appears with positive multiplicity (in fact one) and, if $(\lambda ’,\epsilon ’)$ appears, we have $\lambda ^{max}>\lambda ’$ or $(\lambda ’,\epsilon ’)=(\lambda ^{max},\epsilon ^{max})$.## References

- George Lusztig,
*Character sheaves. V*, Adv. in Math.**61**(1986), no. 2, 103–155. MR**849848**, DOI 10.1016/0001-8708(86)90071-X - G. Lusztig,
*Cuspidal local systems and graded Hecke algebras. III*, Represent. Theory**6**(2002), 202–242. MR**1927954**, DOI 10.1090/S1088-4165-02-00172-3 - I. G. Macdonald,
*Symmetric functions and Hall polynomials*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979. MR**553598** - Toshiaki Shoji,
*Green functions associated to complex reflection groups*, J. Algebra**245**(2001), no. 2, 650–694. MR**1863896**, DOI 10.1006/jabr.2001.8898 - Jean-Loup Waldspurger,
*Représentations de réduction unipotente pour $\textrm {SO}(2n+1)$: quelques conséquences d’un article de Lusztig*, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 803–910 (French). MR**2058629**

## Bibliographic Information

**J.-L. Waldspurger**- Affiliation: CNRS-Institut de Mathématiques de Jussieu-PRG, 4 place Jussieu, Boîte courrier 247, 75252 Paris cedex 05
- MR Author ID: 180090
- Email: jean-loup.waldspurger@imj-prg.fr
- Received by editor(s): June 8, 2018
- Received by editor(s) in revised form: August 22, 2019
- Published electronically: September 30, 2019
- © Copyright 2019 American Mathematical Society
- Journal: Represent. Theory
**23**(2019), 379-438 - MSC (2010): Primary 05E10, 20C30
- DOI: https://doi.org/10.1090/ert/533
- MathSciNet review: 4013117