Local functions on finite groups
HTML articles powered by AMS MathViewer
- by I. M. Isaacs and Gabriel Navarro
- Represent. Theory 24 (2020), 1-37
- DOI: https://doi.org/10.1090/ert/535
- Published electronically: January 14, 2020
- PDF | Request permission
Abstract:
We study local properties of finite groups using chains of $p$-subgroups.References
- J. L. Alperin, Weights for finite groups, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 369–379. MR 933373, DOI 10.1090/pspum/047.1/933373
- Richard Brauer, Investigations on group characters, Ann. of Math. (2) 42 (1941), 936–958. MR 5731, DOI 10.2307/1968775
- Kenneth S. Brown, Euler characteristics of groups: the $p$-fractional part, Invent. Math. 29 (1975), no. 1, 1–5. MR 385008, DOI 10.1007/BF01405170
- Kenneth S. Brown, High dimensional cohomology of discrete groups, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 6, 1795–1797. MR 419682, DOI 10.1073/pnas.73.6.1795
- E. C. Dade, Blocks with cyclic defect groups, Ann. of Math. (2) 84 (1966), 20–48. MR 200355, DOI 10.2307/1970529
- Everett C. Dade, Counting characters in blocks. I, Invent. Math. 109 (1992), no. 1, 187–210. MR 1168370, DOI 10.1007/BF01232023
- I. Martin Isaacs, Character theory of finite groups, Dover Publications, Inc., New York, 1994. Corrected reprint of the 1976 original [Academic Press, New York; MR0460423 (57 #417)]. MR 1280461
- I. Martin Isaacs, Finite group theory, Graduate Studies in Mathematics, vol. 92, American Mathematical Society, Providence, RI, 2008. MR 2426855, DOI 10.1090/gsm/092
- I. Martin Isaacs, Characters of solvable groups, Graduate Studies in Mathematics, vol. 189, American Mathematical Society, Providence, RI, 2018. MR 3791517, DOI 10.1090/gsm/189
- Radha Kessar and Markus Linckelmann, Dade’s ordinary conjecture implies the Alperin-McKay conjecture, Arch. Math. (Basel) 112 (2019), no. 1, 19–25. MR 3901898, DOI 10.1007/s00013-018-1230-9
- Reinhard Knörr and Geoffrey R. Robinson, Some remarks on a conjecture of Alperin, J. London Math. Soc. (2) 39 (1989), no. 1, 48–60. MR 989918, DOI 10.1112/jlms/s2-39.1.48
- Burkhard Külshammer and Geoffrey R. Robinson, On Alperin’s conjecture and certain subgroup complexes, Algebr. Represent. Theory 1 (1998), no. 4, 383–398. MR 1683619, DOI 10.1023/A:1009961408896
- G. Navarro, Characters and blocks of finite groups, London Mathematical Society Lecture Note Series, vol. 250, Cambridge University Press, Cambridge, 1998. MR 1632299, DOI 10.1017/CBO9780511526015
- Gabriel Navarro, Character theory and the McKay conjecture, Cambridge Studies in Advanced Mathematics, vol. 175, Cambridge University Press, Cambridge, 2018. MR 3753712, DOI 10.1017/9781108552790
- Daniel Quillen, Homotopy properties of the poset of nontrivial $p$-subgroups of a group, Adv. in Math. 28 (1978), no. 2, 101–128. MR 493916, DOI 10.1016/0001-8708(78)90058-0
- Geoffrey R. Robinson, Local structure, vertices and Alperin’s conjecture, Proc. London Math. Soc. (3) 72 (1996), no. 2, 312–330. MR 1367081, DOI 10.1112/plms/s3-72.2.312
- Jacques Thévenaz, Locally determined functions and Alperin’s conjecture, J. London Math. Soc. (2) 45 (1992), no. 3, 446–468. MR 1180255, DOI 10.1112/jlms/s2-45.3.446
- P. J. Webb, Subgroup complexes, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 349–365. MR 933372, DOI 10.1090/pspum/047.1/933372
- Thomas R. Wolf, Variations on McKay’s character degree conjecture, J. Algebra 135 (1990), no. 1, 123–138. MR 1076081, DOI 10.1016/0021-8693(90)90153-F
Bibliographic Information
- I. M. Isaacs
- Affiliation: Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, Wisconsin 53706
- Email: isaacs@math.wisc.edu
- Gabriel Navarro
- Affiliation: Departament de Matemàtiques, Universitat de València, 46100 Burjassot. València, Spain
- MR Author ID: 129760
- Email: gabriel@uv.es
- Received by editor(s): March 11, 2019
- Received by editor(s) in revised form: November 18, 2019
- Published electronically: January 14, 2020
- Additional Notes: This paper is partially based upon work supported by the NSF under grant DMS-1440140 while the authors were in residence at MSRI (Berkeley, CA), during the Spring 2018 semester. We thank the Institute for the hospitality and support.
The research of the second author was also supported by MTM2016-76196-P - © Copyright 2020 American Mathematical Society
- Journal: Represent. Theory 24 (2020), 1-37
- MSC (2010): Primary 20D99, 20D30, 20C15, 20D10
- DOI: https://doi.org/10.1090/ert/535
- MathSciNet review: 4051833