Homogeneous vector bundles over abelian varieties via representation theory
HTML articles powered by AMS MathViewer
- by Michel Brion PDF
- Represent. Theory 24 (2020), 85-114 Request permission
Abstract:
Let $A$ be an abelian variety over a field. The homogeneous (or translation-invariant) vector bundles over $A$ form an abelian category $\textrm {HVec}_A$; the Fourier-Mukai transform yields an equivalence of $\textrm {HVec}_A$ with the category of coherent sheaves with finite support on the dual abelian variety. In this paper, we develop an alternative approach to homogeneous vector bundles, based on the equivalence of $\textrm {HVec}_A$ with the category of finite-dimensional representations of a commutative affine group scheme (the “affine fundamental group” of $A$). This displays remarkable analogies between homogeneous vector bundles over abelian varieties and representations of split reductive algebraic groups.References
- M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414–452. MR 131423, DOI 10.1112/plms/s3-7.1.414
- J. Ayoub, Topologie feuilletée et théorie de Galois différentielle, preprint, 2019.
- N. Bourbaki, Éléments de mathématique, Fasc. XXIII, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1261, Hermann, Paris, 1973. Livre II: Algèbre. Chapitre 8: Modules et anneaux semi-simples; Nouveau tirage de l’édition de 1958. MR 0417224
- Michel Brion, The coherent cohomology ring of an algebraic group, Algebr. Represent. Theory 16 (2013), no. 5, 1449–1467. MR 3102962, DOI 10.1007/s10468-012-9364-0
- Michel Brion, On extensions of algebraic groups with finite quotient, Pacific J. Math. 279 (2015), no. 1-2, 135–153. MR 3437773, DOI 10.2140/pjm.2015.279.135
- Michel Brion, Preena Samuel, and V. Uma, Lectures on the structure of algebraic groups and geometric applications, CMI Lecture Series in Mathematics, vol. 1, Hindustan Book Agency, New Delhi; Chennai Mathematical Institute (CMI), Chennai, 2013. MR 3088271, DOI 10.1007/978-93-86279-58-3
- M. Brion, On the fundamental groups of commutative algebraic groups, arXiv:1805.09525, to appear at Annales Henri Lebesgue.
- Brian Conrad, Ofer Gabber, and Gopal Prasad, Pseudo-reductive groups, 2nd ed., New Mathematical Monographs, vol. 26, Cambridge University Press, Cambridge, 2015. MR 3362817, DOI 10.1017/CBO9781316092439
- M. Demazure, P. Gabriel, Groupes algébriques, Masson, Paris, 1970.
- A. Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. 4 (1960), 228 (French). MR 217083
- William J. Haboush and Donghoon Hyeon, Conjugacy classes of commuting nilpotents, Trans. Amer. Math. Soc. 372 (2019), no. 6, 4293–4311. MR 4009390, DOI 10.1090/tran/7782
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- Masaki Kashiwara and Pierre Schapira, Categories and sheaves, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 332, Springer-Verlag, Berlin, 2006. MR 2182076, DOI 10.1007/3-540-27950-4
- Adrian Langer, On the S-fundamental group scheme, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 5, 2077–2119 (2012) (English, with English and French summaries). MR 2961849, DOI 10.5802/aif.2667
- Adrian Langer, On the S-fundamental group scheme. II, J. Inst. Math. Jussieu 11 (2012), no. 4, 835–854. MR 2979824, DOI 10.1017/S1474748012000011
- Giancarlo Lucchini Arteche, Extensions of algebraic groups with finite quotient and nonabelian 2-cohomology, J. Algebra 492 (2017), 102–129. MR 3709145, DOI 10.1016/j.jalgebra.2017.08.026
- Masayoshi Miyanishi, Some remarks on algebraic homogeneous vector bundles, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 71–93. MR 0360588
- Shigeru Mukai, Semi-homogeneous vector bundles on an Abelian variety, J. Math. Kyoto Univ. 18 (1978), no. 2, 239–272. MR 498572, DOI 10.1215/kjm/1250522574
- David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay; by Hindustan Book Agency, New Delhi, 2008. With appendices by C. P. Ramanujam and Yuri Manin; Corrected reprint of the second (1974) edition. MR 2514037
- Madhav V. Nori, The fundamental group-scheme, Proc. Indian Acad. Sci. Math. Sci. 91 (1982), no. 2, 73–122. MR 682517, DOI 10.1007/BF02967978
- Madhav V. Nori, The fundamental group-scheme of an abelian variety, Math. Ann. 263 (1983), no. 3, 263–266. MR 704291, DOI 10.1007/BF01457128
- F. Oort, Commutative group schemes, Lecture Notes in Mathematics, vol. 15, Springer-Verlag, Berlin-New York, 1966. MR 0213365, DOI 10.1007/BFb0097479
- Daniel Perrin, Schémas en groupes quasi-compacts sur un corps, Schémas en groupes quasi-compacts sur un corps et groupes henséliens, U. E. R. Math., Univ. Paris XI, Orsay, 1975, pp. 1–75 (French). MR 0409487
- Daniel Perrin, Approximation des schémas en groupes, quasi compacts sur un corps, Bull. Soc. Math. France 104 (1976), no. 3, 323–335. MR 432661, DOI 10.24033/bsmf.1830
- Akiyoshi Sannai and Hiromu Tanaka, A characterization of ordinary abelian varieties by the Frobenius push-forward of the structure sheaf, Math. Ann. 366 (2016), no. 3-4, 1067–1087. MR 3563232, DOI 10.1007/s00208-015-1352-3
- Stefan Schröer, On the ring of unipotent vector bundles on elliptic curves in positive characteristics, J. Lond. Math. Soc. (2) 82 (2010), no. 1, 110–124. MR 2669643, DOI 10.1112/jlms/jdq028
- Schémas en groupes. I: Propriétés générales des schémas en groupes, Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York, 1970 (French). Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3); Dirigé par M. Demazure et A. Grothendieck. MR 0274458
- Jean-Pierre Serre, Groupes proalgébriques, Inst. Hautes Études Sci. Publ. Math. 7 (1960), 67 (French). MR 118722, DOI 10.1007/BF02699186
- Jean-Pierre Serre, Algebraic groups and class fields, Graduate Texts in Mathematics, vol. 117, Springer-Verlag, New York, 1988. Translated from the French. MR 918564, DOI 10.1007/978-1-4612-1035-1
- The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, 2019.
- Burt Totaro, Pseudo-abelian varieties, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 5, 693–721 (English, with English and French summaries). MR 3185350, DOI 10.24033/asens.2199
- William C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics, vol. 66, Springer-Verlag, New York-Berlin, 1979. MR 547117, DOI 10.1007/978-1-4612-6217-6
- Xiao Long Wu, On the extensions of abelian varieties by affine group schemes, Group theory, Beijing 1984, Lecture Notes in Math., vol. 1185, Springer, Berlin, 1986, pp. 361–387. MR 842453, DOI 10.1007/BFb0076184
Additional Information
- Michel Brion
- Affiliation: Institut Fourier, Université de Grenoble, 100 rue des Mathématiques, 38610 Gières, France
- MR Author ID: 41725
- Email: Michel.Brion@univ-grenoble-alpes.fr
- Received by editor(s): June 12, 2018
- Received by editor(s) in revised form: December 5, 2019
- Published electronically: February 3, 2020
- © Copyright 2020 American Mathematical Society
- Journal: Represent. Theory 24 (2020), 85-114
- MSC (2010): Primary 14J60, 14K05; Secondary 14L15, 20G05
- DOI: https://doi.org/10.1090/ert/537
- MathSciNet review: 4058941