## $\mathbf {Z}/m$-graded Lie algebras and perverse sheaves, IV

HTML articles powered by AMS MathViewer

- by George Lusztig and Zhiwei Yun PDF
- Represent. Theory
**24**(2020), 360-396 Request permission

## Abstract:

Let $G$ be a reductive group over $\mathbf {C}$. Assume that the Lie algebra $\frak g$ of $G$ has a given grading $(\frak g_j)$ indexed by a cyclic group $\mathbf {Z}/m$ such that $\frak g_0$ contains a Cartan subalgebra of $\frak g$. The subgroup $G_0$ of $G$ corresponding to $\frak g_0$ acts on the variety of nilpotent elements in $\frak g_1$ with finitely many orbits. We are interested in computing the local intersection cohomology of closures of these orbits with coefficients in irreducible $G_0$-equivariant local systems in the case of the principal block. We show that these can be computed by a purely combinatorial algorithm.## References

- D. Alvis,
*Induce/restrict matrices for exceptional Weyl groups*, arXiv:RT0506377. - A. A. Beĭlinson, J. Bernstein, and P. Deligne,
*Faisceaux pervers*, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR**751966** - W. M. Beynon and N. Spaltenstein,
*Green functions of finite Chevalley groups of type $E_{n}$ $(n=6,\,7,\,8)$*, J. Algebra**88**(1984), no. 2, 584–614. MR**747534**, DOI 10.1016/0021-8693(84)90084-X - E. B. Dynkin,
*Semisimple subalgebras of semisimple Lie algebras*, Mat. Sbornik N.S.**30(72)**(1952), 349–462 (3 plates) (Russian). MR**0047629** - Nathan Jacobson,
*Completely reducible Lie algebras of linear transformations*, Proc. Amer. Math. Soc.**2**(1951), 105–113. MR**49882**, DOI 10.1090/S0002-9939-1951-0049882-5 - Bertram Kostant,
*The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group*, Amer. J. Math.**81**(1959), 973–1032. MR**114875**, DOI 10.2307/2372999 - Bertram Kostant and Stephen Rallis,
*On orbits associated with symmetric spaces*, Bull. Amer. Math. Soc.**75**(1969), 879–883. MR**257284**, DOI 10.1090/S0002-9904-1969-12337-2 - David Kazhdan and George Lusztig,
*Representations of Coxeter groups and Hecke algebras*, Invent. Math.**53**(1979), no. 2, 165–184. MR**560412**, DOI 10.1007/BF01390031 - David Kazhdan and George Lusztig,
*Schubert varieties and Poincaré duality*, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 185–203. MR**573434** - George Lusztig,
*Representations of finite Chevalley groups*, CBMS Regional Conference Series in Mathematics, vol. 39, American Mathematical Society, Providence, R.I., 1978. Expository lectures from the CBMS Regional Conference held at Madison, Wis., August 8–12, 1977. MR**518617**, DOI 10.1090/cbms/039 - G. Lusztig,
*Green polynomials and singularities of unipotent classes*, Adv. in Math.**42**(1981), no. 2, 169–178. MR**641425**, DOI 10.1016/0001-8708(81)90038-4 - George Lusztig,
*Characters of reductive groups over a finite field*, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR**742472**, DOI 10.1515/9781400881772 - G. Lusztig,
*Intersection cohomology complexes on a reductive group*, Invent. Math.**75**(1984), no. 2, 205–272. MR**732546**, DOI 10.1007/BF01388564 - George Lusztig,
*Character sheaves. I*, Adv. in Math.**56**(1985), no. 3, 193–237. MR**792706**, DOI 10.1016/0001-8708(85)90034-9 - George Lusztig,
*Character sheaves. V*, Adv. in Math.**61**(1986), no. 2, 103–155. MR**849848**, DOI 10.1016/0001-8708(86)90071-X - G. Lusztig,
*Canonical bases arising from quantized enveloping algebras*, J. Amer. Math. Soc.**3**(1990), no. 2, 447–498. MR**1035415**, DOI 10.1090/S0894-0347-1990-1035415-6 - George Lusztig,
*Study of perverse sheaves arising from graded Lie algebras*, Adv. Math.**112**(1995), no. 2, 147–217. MR**1327095**, DOI 10.1006/aima.1995.1031 - G. Lusztig,
*Graded Lie algebras and intersection cohomology*, Representation theory of algebraic groups and quantum groups, Progr. Math., vol. 284, Birkhäuser/Springer, New York, 2010, pp. 191–224. MR**2761940**, DOI 10.1007/978-0-8176-4697-4_{8} - George Lusztig and Zhiwei Yun,
*$\mathbf {Z}/m$-graded Lie algebras and perverse sheaves, I*, Represent. Theory**21**(2017), 277–321. MR**3697026**, DOI 10.1090/ert/500 - George Lusztig and Zhiwei Yun,
*$\mathbf {Z}/m$-graded Lie algebras and perverse sheaves, II*, Represent. Theory**21**(2017), 322–353. MR**3698042**, DOI 10.1090/ert/501 - George Lusztig and Zhiwei Yun,
*$\Bbb {Z}/m\Bbb {Z}$-graded Lie algebras and perverse sheaves, III: Graded double affine Hecke algebra*, Represent. Theory**22**(2018), 87–118. MR**3829497**, DOI 10.1090/ert/515 - A. Malcev,
*On semi-simple subgroups of Lie groups*, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR]**8**(1944), 143–174 (Russian, with English summary). MR**0011303** - V. V. Morozov,
*On a nilpotent element in a semi-simple Lie algebra*, C. R. (Doklady) Acad. Sci. URSS (N.S.)**36**(1942), 83–86. MR**0007750** - Toshiaki Shoji,
*On the Springer representations of the Weyl groups of classical algebraic groups*, Comm. Algebra**7**(1979), no. 16, 1713–1745. MR**546195**, DOI 10.1080/00927877908822425 - T. Shoji,
*On the Green polynomials of classical groups*, Invent. Math.**74**(1983), no. 2, 239–267. MR**723216**, DOI 10.1007/BF01394315 - T. A. Springer,
*A construction of representations of Weyl groups*, Invent. Math.**44**(1978), no. 3, 279–293. MR**491988**, DOI 10.1007/BF01403165 - Eric Vasserot,
*Induced and simple modules of double affine Hecke algebras*, Duke Math. J.**126**(2005), no. 2, 251–323. MR**2115259**, DOI 10.1215/S0012-7094-04-12623-5 - È. B. Vinberg,
*The Weyl group of a graded Lie algebra*, Izv. Akad. Nauk SSSR Ser. Mat.**40**(1976), no. 3, 488–526, 709 (Russian). MR**0430168**

## Additional Information

**George Lusztig**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Email: gyuri@mit.edu
**Zhiwei Yun**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 862829
- Email: zyun@mit.edu
- Received by editor(s): August 1, 2019
- Received by editor(s) in revised form: June 24, 2020
- Published electronically: August 26, 2020
- Additional Notes: The first author was supported in part by NSF grant DMS-1855773.

The second author was supported in part by the Packard Foundation. - © Copyright 2020 American Mathematical Society
- Journal: Represent. Theory
**24**(2020), 360-396 - MSC (2010): Primary 22E60
- DOI: https://doi.org/10.1090/ert/546
- MathSciNet review: 4139898