Spinoriality of orthogonal representations of reductive groups
HTML articles powered by AMS MathViewer
- by Rohit Joshi and Steven Spallone
- Represent. Theory 24 (2020), 435-469
- DOI: https://doi.org/10.1090/ert/552
- Published electronically: September 16, 2020
- PDF | Request permission
Abstract:
Let $G$ be a connected reductive group over a field $F$ of characteristic $0$, and $\varphi : G \to \operatorname {SO}(V)$ an orthogonal representation over $F$. We give criteria to determine when $\varphi$ lifts to the double cover $\operatorname {Spin}(V)$.References
- J. Frank Adams, Lectures on Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0252560
- Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. MR 1890629, DOI 10.1007/978-3-540-89394-3
- Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 7–9, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2005. Translated from the 1975 and 1982 French originals by Andrew Pressley. MR 2109105
- E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30(72) (1952), 349–462 (3 plates) (Russian). MR 0047629
- E. B. Dynkin, Selected papers of E. B. Dynkin with commentary, American Mathematical Society, Providence, RI; International Press, Cambridge, MA, 2000. Edited by A. A. Yushkevich, G. M. Seitz and A. L. Onishchik. MR 1757976
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- Roe Goodman and Nolan R. Wallach, Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol. 255, Springer, Dordrecht, 2009. MR 2522486, DOI 10.1007/978-0-387-79852-3
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- R. Joshi, Spinorial representations of Lie groups, PhD thesis, Indian Institute of Science Education and Research, Pune, 2018.
- Alexander Kirillov Jr., An introduction to Lie groups and Lie algebras, Cambridge Studies in Advanced Mathematics, vol. 113, Cambridge University Press, Cambridge, 2008. MR 2440737, DOI 10.1017/CBO9780511755156
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Bertram Kostant, On Macdonald’s $\eta$-function formula, the Laplacian and generalized exponents, Advances in Math. 20 (1976), no. 2, 179–212. MR 485661, DOI 10.1016/0001-8708(76)90186-9
- Dipendra Prasad and Dinakar Ramakrishnan, Lifting orthogonal representations to spin groups and local root numbers, Proc. Indian Acad. Sci. Math. Sci. 105 (1995), no. 3, 259–267. MR 1369731, DOI 10.1007/BF02837191
- Hans Samelson, Notes on Lie algebras, 2nd ed., Universitext, Springer-Verlag, New York, 1990. MR 1056083, DOI 10.1007/978-1-4613-9014-5
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- T. A. Springer, Reductive groups, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–27. MR 546587
- T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713, DOI 10.1007/978-0-8176-4840-4
- Richard P. Stanley, Enumerative combinatorics. Volume 1, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012. MR 2868112
- Tonny A. Springer and Ferdinand D. Veldkamp, Octonions, Jordan algebras and exceptional groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. MR 1763974, DOI 10.1007/978-3-662-12622-6
Bibliographic Information
- Rohit Joshi
- Affiliation: Bhaskaracharya Pratishthana, 56/14, Erandavane, Damle Path, off Law College Road, Pune-411004, Maharashtra, India; and Indian Institute of Science Education and Research, Pune-411021, India
- ORCID: 0000-0002-2471-2737
- Email: rohitsj@students.iiserpune.ac.in, rohitsj2004@gmail.com
- Steven Spallone
- Affiliation: Indian Institute of Science Education and Research, Pune-411021, India
- MR Author ID: 824479
- Email: sspallone@gmail.com
- Received by editor(s): October 31, 2018
- Received by editor(s) in revised form: February 21, 2020
- Published electronically: September 16, 2020
- Additional Notes: This paper comes out of the first author’s Ph.D. thesis at IISER Pune, during which he was supported by an Institute Fellowship. Afterwards he was supported by a fellowship from Bhaskaracharya Pratishthan.
- © Copyright 2020 American Mathematical Society
- Journal: Represent. Theory 24 (2020), 435-469
- MSC (2010): Primary 20G15; Secondary 22E46
- DOI: https://doi.org/10.1090/ert/552
- MathSciNet review: 4150223