Jantzen filtration of Weyl modules, product of Young symmetrizers and denominator of Young’s seminormal basis
Authors:
Ming Fang, Kay Jin Lim and Kai Meng Tan
Journal:
Represent. Theory 24 (2020), 551-579
MSC (2020):
Primary 20G05, 20C30
DOI:
https://doi.org/10.1090/ert/553
Published electronically:
October 29, 2020
MathSciNet review:
4168181
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let $G$ be a connected reductive algebraic group over an algebraically closed field of characteristic $p>0$, $\Delta (\lambda )$ denote the Weyl module of $G$ of highest weight $\lambda$ and $\iota _{\lambda ,\mu }:\Delta (\lambda +\mu )\to \Delta (\lambda )\otimes \Delta (\mu )$ be the canonical $G$-morphism. We study the split condition for $\iota _{\lambda ,\mu }$ over $\mathbb {Z}_{(p)}$, and apply this as an approach to compare the Jantzen filtrations of the Weyl modules $\Delta (\lambda )$ and $\Delta (\lambda +\mu )$. In the case when $G$ is of type $A$, we show that the split condition is closely related to the product of certain Young symmetrizers and, under some mild conditions, is further characterized by the denominator of a certain Young’s seminormal basis vector. We obtain explicit formulas for the split condition in some cases.
- Kaan Akin, David A. Buchsbaum, and Jerzy Weyman, Schur functors and Schur complexes, Adv. in Math. 44 (1982), no. 3, 207–278. MR 658729, DOI https://doi.org/10.1016/0001-8708%2882%2990039-1
- Henning Haahr Andersen, Filtrations of cohomology modules for Chevalley groups, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 4, 495–528 (1984). MR 740588
- Henning Haahr Andersen, Jantzen’s filtrations of Weyl modules, Math. Z. 194 (1987), no. 1, 127–142. MR 871225, DOI https://doi.org/10.1007/BF01168012
- Jonathan Brundan and Alexander Kleshchev, On translation functors for general linear and symmetric groups, Proc. London Math. Soc. (3) 80 (2000), no. 1, 75–106. MR 1719176, DOI https://doi.org/10.1112/S0024611500012132
- S. Donkin, The $q$-Schur algebra, London Mathematical Society Lecture Note Series, vol. 253, Cambridge University Press, Cambridge, 1998. MR 1707336
- M. Fang, K. J. Lim, and K. M. Tan, Young’s seminormal basis vectors and their denominators, arXiv:2007.11188v1 (2020).
- William Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. MR 1464693
- Eugenio Giannelli, Kay Jin Lim, William O’Donovan, and Mark Wildon, On signed Young permutation modules and signed $p$-Kostka numbers, J. Group Theory 20 (2017), no. 4, 637–679. MR 3667114, DOI https://doi.org/10.1515/jgth-2017-0007
- James A. Green, Polynomial representations of ${\rm GL}_{n}$, Lecture Notes in Mathematics, vol. 830, Springer-Verlag, Berlin-New York, 1980. MR 606556
- David J. Hemmer and Daniel K. Nakano, Specht filtrations for Hecke algebras of type A, J. London Math. Soc. (2) 69 (2004), no. 3, 623–638. MR 2050037, DOI https://doi.org/10.1112/S0024610704005186
- G. D. James, The representation theory of the symmetric groups, Lecture Notes in Mathematics, vol. 682, Springer, Berlin, 1978. MR 513828
- Jens C. Jantzen, Darstellungen halbeinfacher Gruppen und kontravariante Formen, J. Reine Angew. Math. 290 (1977), 117–141. MR 432775, DOI https://doi.org/10.1515/crll.1977.290.117
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93–146 (German). MR 1578793, DOI https://doi.org/10.1515/crll.1852.44.93
- Sinéad Lyle and Andrew Mathas, Carter-Payne homomorphisms and Jantzen filtrations, J. Algebraic Combin. 32 (2010), no. 3, 417–457. MR 2721060, DOI https://doi.org/10.1007/s10801-010-0222-z
- Andrew Mathas, Iwahori-Hecke algebras and Schur algebras of the symmetric group, University Lecture Series, vol. 15, American Mathematical Society, Providence, RI, 1999. MR 1711316
- G. E. Murphy, On the representation theory of the symmetric groups and associated Hecke algebras, J. Algebra 152 (1992), no. 2, 492–513. MR 1194316, DOI https://doi.org/10.1016/0021-8693%2892%2990045-N
- Claudiu Raicu, Products of Young symmetrizers and ideals in the generic tensor algebra, J. Algebraic Combin. 39 (2014), no. 2, 247–270. MR 3159252, DOI https://doi.org/10.1007/s10801-013-0447-8
- S. Ryom-Hansen, On the denominators of Young’s seminormal basis, arXiv:0904.4243v3.
- Steen Ryom-Hansen, Young’s seminormal form and simple modules for $S_n$ in characteristic $p$, Algebr. Represent. Theory 16 (2013), no. 6, 1587–1609. MR 3127349, DOI https://doi.org/10.1007/s10468-012-9372-0
- Peng Shan, Graded decomposition matrices of $v$-Schur algebras via Jantzen filtration, Represent. Theory 16 (2012), 212–269. MR 2915315, DOI https://doi.org/10.1090/S1088-4165-2012-00416-2
- Burt Totaro, Projective resolutions of representations of ${\rm GL}(n)$, J. Reine Angew. Math. 482 (1997), 1–13. MR 1427655, DOI https://doi.org/10.1515/crll.1997.482.1
- Nanhua Xi, Irreducible modules of quantized enveloping algebras at roots of $1$, Publ. Res. Inst. Math. Sci. 32 (1996), no. 2, 235–276. MR 1382803, DOI https://doi.org/10.2977/prims/1195162964
Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2020): 20G05, 20C30
Retrieve articles in all journals with MSC (2020): 20G05, 20C30
Additional Information
Ming Fang
Affiliation:
HLM, HCMS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China; and School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
MR Author ID:
715486
Email:
fming@amss.ac.cn
Kay Jin Lim
Affiliation:
Division of Mathematical Sciences, Nanyang Technological University, SPMS-04-01, 21 Nanyang Link, 637371 Singapore
MR Author ID:
865544
ORCID:
0000-0002-2605-0482
Email:
limkj@ntu.edu.sg
Kai Meng Tan
Affiliation:
Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge Road, 119076 Singapore
MR Author ID:
656415
Email:
tankm@nus.edu.sg
Keywords:
Jantzen filtration,
Young symmetrizer,
Young’s seminormal basis
Received by editor(s):
December 12, 2019
Received by editor(s) in revised form:
July 20, 2020, and August 24, 2020
Published electronically:
October 29, 2020
Additional Notes:
The first author was supported by NSFC (No. 11688101, 11471315 and 11321101), while the second and third authors were supported by Singapore MOE Tier 2 AcRF MOE2015-T2-2-003.
Article copyright:
© Copyright 2020
American Mathematical Society