Cohomological representations of parahoric subgroups
HTML articles powered by AMS MathViewer
- by Charlotte Chan and Alexander Ivanov
- Represent. Theory 25 (2021), 1-26
- DOI: https://doi.org/10.1090/ert/557
- Published electronically: January 8, 2021
- PDF | Request permission
Abstract:
We give a geometric construction of representations of parahoric subgroups $P$ of a reductive group $G$ over a local field which splits over an unramified extension. These representations correspond to characters $\theta$ of unramified maximal tori and, when the torus is elliptic, are expected to give rise to supercuspidal representations of $G$. We calculate the character of these $P$-representations on a special class of regular semisimple elements of $G$. Under a certain regularity condition on $\theta$, we prove that the associated $P$-representations are irreducible. This generalizes a construction of Lusztig from the hyperspecial case to the setting of an arbitrary parahoric.References
- Colin J. Bushnell and Guy Henniart, The essentially tame local Langlands correspondence. II. Totally ramified representations, Compos. Math. 141 (2005), no. 4, 979–1011. MR 2148193, DOI 10.1112/S0010437X05001363
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- Bhargav Bhatt and Peter Scholze, Projectivity of the Witt vector affine Grassmannian, Invent. Math. 209 (2017), no. 2, 329–423. MR 3674218, DOI 10.1007/s00222-016-0710-4
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251 (French). MR 327923, DOI 10.1007/BF02715544
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376 (French). MR 756316
- M. Boyarchenko and J. Weinstein, Geometric realization of special cases of local Langlands and Jacquet-Langlands correspondences, Preprint. arXiv:1303.5795, 2013.
- Mitya Boyarchenko and Jared Weinstein, Maximal varieties and the local Langlands correspondence for $GL(n)$, J. Amer. Math. Soc. 29 (2016), no. 1, 177–236. MR 3402698, DOI 10.1090/jams826
- C. Chan and A. B. Ivanov. Affine Deligne–Lusztig varieties at infinite level, to appear in Math. Ann., 2020+. arXiv:1811.11204.
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, DOI 10.2307/1971021
- Marvin J. Greenberg, Schemata over local rings, Ann. of Math. (2) 73 (1961), 624–648. MR 126449, DOI 10.2307/1970321
- Marvin J. Greenberg, Schemata over local rings. II, Ann. of Math. (2) 78 (1963), 256–266. MR 156855, DOI 10.2307/1970342
- Guy Henniart, Correspondance de Langlands-Kazhdan explicite dans le cas non ramifié, Math. Nachr. 158 (1992), 7–26 (French, with French summary). MR 1235293, DOI 10.1002/mana.19921580102
- T. Haines and M. Rapoport, On parahoric subgroups, Appendix to \cite{PappasR_{0}8}, 2008.
- G. Lusztig, Some remarks on the supercuspidal representations of $p$-adic semisimple groups, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 171–175. MR 546595
- G. Lusztig, Representations of reductive groups over finite rings, Represent. Theory 8 (2004), 1–14. MR 2048585, DOI 10.1090/S1088-4165-04-00232-8
- Allen Moy and Gopal Prasad, Unrefined minimal $K$-types for $p$-adic groups, Invent. Math. 116 (1994), no. 1-3, 393–408. MR 1253198, DOI 10.1007/BF01231566
- Allen Moy and Gopal Prasad, Jacquet functors and unrefined minimal $K$-types, Comment. Math. Helv. 71 (1996), no. 1, 98–121. MR 1371680, DOI 10.1007/BF02566411
- G. Pappas and M. Rapoport, Twisted loop groups and their affine flag varieties, Adv. Math. 219 (2008), no. 1, 118–198. With an appendix by T. Haines and Rapoport. MR 2435422, DOI 10.1016/j.aim.2008.04.006
- Alexander Stasinski, Unramified representations of reductive groups over finite rings, Represent. Theory 13 (2009), 636–656. MR 2558788, DOI 10.1090/S1088-4165-09-00350-1
- Alexander Stasinski, Reductive group schemes, the Greenberg functor, and associated algebraic groups, J. Pure Appl. Algebra 216 (2012), no. 5, 1092–1101. MR 2875329, DOI 10.1016/j.jpaa.2011.10.027
- J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–69. MR 546588
- Jiu-Kang Yu, Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001), no. 3, 579–622. MR 1824988, DOI 10.1090/S0894-0347-01-00363-0
- Jiu-Kang Yu, Smooth models associated to concave functions in Bruhat-Tits theory, Autour des schémas en groupes. Vol. III, Panor. Synthèses, vol. 47, Soc. Math. France, Paris, 2015, pp. 227–258 (English, with English and French summaries). MR 3525846
- Xinwen Zhu, Affine Grassmannians and the geometric Satake in mixed characteristic, Ann. of Math. (2) 185 (2017), no. 2, 403–492. MR 3612002, DOI 10.4007/annals.2017.185.2.2
Bibliographic Information
- Charlotte Chan
- Affiliation: Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, New Jersey 08544-1000
- MR Author ID: 1155604
- Email: charchan@mit.edu
- Alexander Ivanov
- Affiliation: Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
- MR Author ID: 1014138
- Email: ivanov@math.uni-bonn.de
- Received by editor(s): October 1, 2019
- Received by editor(s) in revised form: November 4, 2020
- Published electronically: January 8, 2021
- Additional Notes: The first author was partially supported by an NSF Postdoctoral Research Fellowship (DMS-1802905) and by the DFG via the Leibniz Prize of Peter Scholze.
The second author was supported by the DFG via the Leibniz Prize of Peter Scholze. - © Copyright 2021 American Mathematical Society
- Journal: Represent. Theory 25 (2021), 1-26
- MSC (2020): Primary 20G25, 14L15
- DOI: https://doi.org/10.1090/ert/557
- MathSciNet review: 4197070