Cohomological representations of parahoric subgroups
Authors:
Charlotte Chan and Alexander Ivanov
Journal:
Represent. Theory 25 (2021), 1-26
MSC (2020):
Primary 20G25, 14L15
DOI:
https://doi.org/10.1090/ert/557
Published electronically:
January 8, 2021
MathSciNet review:
4197070
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We give a geometric construction of representations of parahoric subgroups $P$ of a reductive group $G$ over a local field which splits over an unramified extension. These representations correspond to characters $\theta$ of unramified maximal tori and, when the torus is elliptic, are expected to give rise to supercuspidal representations of $G$. We calculate the character of these $P$-representations on a special class of regular semisimple elements of $G$. Under a certain regularity condition on $\theta$, we prove that the associated $P$-representations are irreducible. This generalizes a construction of Lusztig from the hyperspecial case to the setting of an arbitrary parahoric.
- Colin J. Bushnell and Guy Henniart, The essentially tame local Langlands correspondence. II. Totally ramified representations, Compos. Math. 141 (2005), no. 4, 979–1011. MR 2148193, DOI https://doi.org/10.1112/S0010437X05001363
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012
- Bhargav Bhatt and Peter Scholze, Projectivity of the Witt vector affine Grassmannian, Invent. Math. 209 (2017), no. 2, 329–423. MR 3674218, DOI https://doi.org/10.1007/s00222-016-0710-4
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251 (French). MR 327923
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376 (French). MR 756316
- M. Boyarchenko and J. Weinstein, Geometric realization of special cases of local Langlands and Jacquet-Langlands correspondences, Preprint. arXiv:1303.5795, 2013.
- Mitya Boyarchenko and Jared Weinstein, Maximal varieties and the local Langlands correspondence for $GL(n)$, J. Amer. Math. Soc. 29 (2016), no. 1, 177–236. MR 3402698, DOI https://doi.org/10.1090/S0894-0347-2015-00826-8
- C. Chan and A. B. Ivanov. Affine Deligne–Lusztig varieties at infinite level, to appear in Math. Ann., 2020+. arXiv:1811.11204.
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, DOI https://doi.org/10.2307/1971021
- Marvin J. Greenberg, Schemata over local rings, Ann. of Math. (2) 73 (1961), 624–648. MR 126449, DOI https://doi.org/10.2307/1970321
- Marvin J. Greenberg, Schemata over local rings. II, Ann. of Math. (2) 78 (1963), 256–266. MR 156855, DOI https://doi.org/10.2307/1970342
- Guy Henniart, Correspondance de Langlands-Kazhdan explicite dans le cas non ramifié, Math. Nachr. 158 (1992), 7–26 (French, with French summary). MR 1235293, DOI https://doi.org/10.1002/mana.19921580102
- T. Haines and M. Rapoport, On parahoric subgroups, Appendix to \cite{PappasR_{0}8}, 2008.
- G. Lusztig, Some remarks on the supercuspidal representations of $p$-adic semisimple groups, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 171–175. MR 546595
- G. Lusztig, Representations of reductive groups over finite rings, Represent. Theory 8 (2004), 1–14. MR 2048585, DOI https://doi.org/10.1090/S1088-4165-04-00232-8
- Allen Moy and Gopal Prasad, Unrefined minimal $K$-types for $p$-adic groups, Invent. Math. 116 (1994), no. 1-3, 393–408. MR 1253198, DOI https://doi.org/10.1007/BF01231566
- Allen Moy and Gopal Prasad, Jacquet functors and unrefined minimal $K$-types, Comment. Math. Helv. 71 (1996), no. 1, 98–121. MR 1371680, DOI https://doi.org/10.1007/BF02566411
- G. Pappas and M. Rapoport, Twisted loop groups and their affine flag varieties, Adv. Math. 219 (2008), no. 1, 118–198. With an appendix by T. Haines and Rapoport. MR 2435422, DOI https://doi.org/10.1016/j.aim.2008.04.006
- Alexander Stasinski, Unramified representations of reductive groups over finite rings, Represent. Theory 13 (2009), 636–656. MR 2558788, DOI https://doi.org/10.1090/S1088-4165-09-00350-1
- Alexander Stasinski, Reductive group schemes, the Greenberg functor, and associated algebraic groups, J. Pure Appl. Algebra 216 (2012), no. 5, 1092–1101. MR 2875329, DOI https://doi.org/10.1016/j.jpaa.2011.10.027
- J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–69. MR 546588
- Jiu-Kang Yu, Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001), no. 3, 579–622. MR 1824988, DOI https://doi.org/10.1090/S0894-0347-01-00363-0
- Jiu-Kang Yu, Smooth models associated to concave functions in Bruhat-Tits theory, Autour des schémas en groupes. Vol. III, Panor. Synthèses, vol. 47, Soc. Math. France, Paris, 2015, pp. 227–258 (English, with English and French summaries). MR 3525846
- Xinwen Zhu, Affine Grassmannians and the geometric Satake in mixed characteristic, Ann. of Math. (2) 185 (2017), no. 2, 403–492. MR 3612002, DOI https://doi.org/10.4007/annals.2017.185.2.2
Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2020): 20G25, 14L15
Retrieve articles in all journals with MSC (2020): 20G25, 14L15
Additional Information
Charlotte Chan
Affiliation:
Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, New Jersey 08544-1000
MR Author ID:
1155604
Email:
charchan@mit.edu
Alexander Ivanov
Affiliation:
Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
MR Author ID:
1014138
Email:
ivanov@math.uni-bonn.de
Received by editor(s):
October 1, 2019
Received by editor(s) in revised form:
November 4, 2020
Published electronically:
January 8, 2021
Additional Notes:
The first author was partially supported by an NSF Postdoctoral Research Fellowship (DMS-1802905) and by the DFG via the Leibniz Prize of Peter Scholze.
The second author was supported by the DFG via the Leibniz Prize of Peter Scholze.
Article copyright:
© Copyright 2021
American Mathematical Society