Varieties of elementary abelian Lie algebras and degrees of modules
HTML articles powered by AMS MathViewer
- by Hao Chang and Rolf Farnsteiner
- Represent. Theory 25 (2021), 90-141
- DOI: https://doi.org/10.1090/ert/559
- Published electronically: February 11, 2021
- PDF | Request permission
Abstract:
Let $(\mathfrak {g},[p])$ be a restricted Lie algebra over an algebraically closed field $k$ of characteristic $p\!\ge \!3$. Motivated by the behavior of geometric invariants of the so-called $(\mathfrak {g},[p])$-modules of constant $j$-rank ($j \in \{1,\ldots ,p\!-\!1\}$), we study the projective variety $\mathbb {E}(2,\mathfrak {g})$ of two-dimensional elementary abelian subalgebras. If $p\!\ge \!5$, then the topological space $\mathbb {E}(2,\mathfrak {g}/C(\mathfrak {g}))$, associated to the factor algebra of $\mathfrak {g}$ by its center $C(\mathfrak {g})$, is shown to be connected. We give applications concerning categories of $(\mathfrak {g},[p])$-modules of constant $j$-rank and certain invariants, called $j$-degrees.References
- Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1997. Corrected reprint of the 1995 original. MR 1476671
- David J. Benson, Representations of elementary abelian $p$-groups and vector bundles, Cambridge Tracts in Mathematics, vol. 208, Cambridge University Press, Cambridge, 2017. MR 3585474, DOI 10.1017/9781316795699
- Daniel Bissinger, Representations of constant socle rank for the Kronecker algebra, Forum Math. 32 (2020), no. 1, 23–43. MR 4048452, DOI 10.1515/forum-2018-0143
- Brian D. Boe, Daniel K. Nakano, and Emilie Wiesner, $\rm Ext^1$-quivers for the Witt algebra $W(1,1)$, J. Algebra 322 (2009), no. 5, 1548–1564. MR 2543622, DOI 10.1016/j.jalgebra.2009.05.043
- Jean-Marie Bois, Rolf Farnsteiner, and Bin Shu, Weyl groups for non-classical restricted Lie algebras and the Chevalley restriction theorem, Forum Math. 26 (2014), no. 5, 1333–1379. MR 3334032, DOI 10.1515/forum-2011-0145
- Vitalij M. Bondarenko and Iryna V. Lytvynchuk, The representation type of elementary abelian $p$-groups with respect to the modules of constant Jordan type, Algebra Discrete Math. 14 (2012), no. 1, 29–36. MR 3052319
- Jon F. Carlson, The variety of an indecomposable module is connected, Invent. Math. 77 (1984), no. 2, 291–299. MR 752822, DOI 10.1007/BF01388448
- Jon F. Carlson, Eric M. Friedlander, and Julia Pevtsova, Modules of constant Jordan type, J. Reine Angew. Math. 614 (2008), 191–234. MR 2376286, DOI 10.1515/CRELLE.2008.006
- Jon F. Carlson, Eric M. Friedlander, and Julia Pevtsova, Elementary subalgebras of Lie algebras, J. Algebra 442 (2015), 155–189. MR 3395058, DOI 10.1016/j.jalgebra.2014.10.015
- Jon F. Carlson, Eric M. Friedlander, and Andrei Suslin, Modules for $\Bbb Z/p\times \Bbb Z/p$, Comment. Math. Helv. 86 (2011), no. 3, 609–657. MR 2803855, DOI 10.4171/CMH/236
- Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication. MR 1266626
- H. Chang, Varieties of elementary Lie algebras, Ph.-D. Thesis, University of Kiel, Kiel, Germany, 2016.
- Hao Chang and Rolf Farnsteiner, Finite group schemes of $p$-rank $\leqslant 1$, Math. Proc. Cambridge Philos. Soc. 166 (2019), no. 2, 297–323. MR 3903120, DOI 10.1017/S0305004117000834
- Ho-Jui Chang, Über Wittsche Lie-Ringe, Abh. Math. Sem. Hansischen Univ. 14 (1941), 151–184 (German). MR 5100, DOI 10.1007/BF02940743
- M. Demazure and P. Gabriel, Groupes Algébriques, Masson, Paris/North Holland, Amsterdam, 1970.
- S. P. Demuškin, Cartan subalgebras of the simple Lie $p$-algebras $W_{n}$ and $S_{n}$, Sibirsk. Mat. Ž. 11 (1970), 310–325 (Russian). MR 0262310
- S. P. Demuškin, Cartan subalgebras of simple non-classical Lie $p$-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 915–932 (Russian). MR 0327854
- Karin Erdmann, Blocks of tame representation type and related algebras, Lecture Notes in Mathematics, vol. 1428, Springer-Verlag, Berlin, 1990. MR 1064107, DOI 10.1007/BFb0084003
- Rolf Farnsteiner, Derivations and central extensions of finitely generated graded Lie algebras, J. Algebra 118 (1988), no. 1, 33–45. MR 961324, DOI 10.1016/0021-8693(88)90046-4
- Rolf Farnsteiner, Varieties of tori and Cartan subalgebras of restricted Lie algebras, Trans. Amer. Math. Soc. 356 (2004), no. 10, 4181–4236. MR 2058843, DOI 10.1090/S0002-9947-04-03476-2
- Rolf Farnsteiner, Tameness and complexity of finite group schemes, Bull. Lond. Math. Soc. 39 (2007), no. 1, 63–70. MR 2303520, DOI 10.1112/blms/bdl006
- Rolf Farnsteiner, Jordan types for indecomposable modules of finite group schemes, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 5, 925–989. MR 3210958, DOI 10.4171/JEMS/452
- Rolf Farnsteiner, Representations of finite group schemes and morphisms of projective varieties, Proc. Lond. Math. Soc. (3) 114 (2017), no. 3, 433–475. MR 3653236, DOI 10.1112/plms.12010
- Rolf Farnsteiner and Andrzej Skowroński, Classification of restricted Lie algebras with tame principal block, J. Reine Angew. Math. 546 (2002), 1–45. MR 1900992, DOI 10.1515/crll.2002.043
- Eric M. Friedlander and Julia Pevtsova, Generalized support varieties for finite group schemes, Doc. Math. Extra vol.: Andrei A. Suslin sixtieth birthday (2010), 197–222. MR 2804254
- Meinolf Geck, An introduction to algebraic geometry and algebraic groups, Oxford Graduate Texts in Mathematics, vol. 10, Oxford University Press, Oxford, 2003. MR 2032320
- Ulrich Görtz and Torsten Wedhorn, Algebraic geometry I, Advanced Lectures in Mathematics, Vieweg + Teubner, Wiesbaden, 2010. Schemes with examples and exercises. MR 2675155, DOI 10.1007/978-3-8348-9722-0
- Sebastian Herpel and David I. Stewart, On the smoothness of normalisers, the subalgebra structure of modular Lie algebras, and the cohomology of small representations, Doc. Math. 21 (2016), 1–37. MR 3465106
- Sebastian Herpel and David I. Stewart, Maximal subalgebras of Cartan type in the exceptional Lie algebras, Selecta Math. (N.S.) 22 (2016), no. 2, 765–799. MR 3477335, DOI 10.1007/s00029-015-0199-5
- G. Hochschild, Cohomology of restricted Lie algebras, Amer. J. Math. 76 (1954), 555–580. MR 63361, DOI 10.2307/2372701
- Randall R. Holmes, Simple restricted modules for the restricted Hamiltonian algebra, J. Algebra 199 (1998), no. 1, 229–261. MR 1489362, DOI 10.1006/jabr.1997.7172
- James E. Humphreys, Algebraic groups and modular Lie algebras, Memoirs of the American Mathematical Society, No. 71, American Mathematical Society, Providence, R.I., 1967. MR 0217075
- J. E. Humphreys, Projective modules for $\textrm {SL}(2,$ $q)$, J. Algebra 25 (1973), 513–518. MR 399241, DOI 10.1016/0021-8693(73)90097-5
- J. E. Humphreys, Symmetry for finite dimensional Hopf algebras, Proc. Amer. Math. Soc. 68 (1978), 143–148.
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773, DOI 10.1007/978-1-4684-9443-3
- J. E. Humpphreys, Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics 29. Cambridge University Press, 1990.
- Jens Carsten Jantzen, Modular representations of reductive Lie algebras, J. Pure Appl. Algebra 152 (2000), no. 1-3, 133–185. Commutative algebra, homological algebra and representation theory (Catania/Genoa/Rome, 1998). MR 1783993, DOI 10.1016/S0022-4049(99)00142-5
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- Jens Carsten Jantzen, Nilpotent orbits in representation theory, Lie theory, Progr. Math., vol. 228, Birkhäuser Boston, Boston, MA, 2004, pp. 1–211. MR 2042689
- A. I. Kostrikin, Strong degeneracy of simple Lie $p$-algebras, Dokl. Akad. Nauk SSSR 150 (1963), 248–250. MR 0148718
- Paul Levy, George McNinch, and Donna M. Testerman, Nilpotent subalgebras of semisimple Lie algebras, C. R. Math. Acad. Sci. Paris 347 (2009), no. 9-10, 477–482 (English, with English and French summaries). MR 2576893, DOI 10.1016/j.crma.2009.03.015
- Gunter Malle and Donna Testerman, Linear algebraic groups and finite groups of Lie type, Cambridge Studies in Advanced Mathematics, vol. 133, Cambridge University Press, Cambridge, 2011. MR 2850737, DOI 10.1017/CBO9780511994777
- J. S. Milne, Algebraic groups, Cambridge Studies in Advanced Mathematics, vol. 170, Cambridge University Press, Cambridge, 2017. The theory of group schemes of finite type over a field. MR 3729270, DOI 10.1017/9781316711736
- Yang Pan, Varieties of elementary subalgebras of submaximal rank in type A, J. Lie Theory 28 (2018), no. 1, 57–70. MR 3683371
- Julia Pevtsova and Jim Stark, Varieties of elementary subalgebras of maximal dimension for modular Lie algebras, Geometric and topological aspects of the representation theory of finite groups, Springer Proc. Math. Stat., vol. 242, Springer, Cham, 2018, pp. 339–375. MR 3901167, DOI 10.1007/978-3-319-94033-5_{1}4
- A. A. Premet, Inner ideals in modular Lie algebras, Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk 5 (1986), 11–15, 123 (Russian, with English summary). MR 876665
- A. A. Premet, Lie algebras without strong degeneration, Mat. Sb. (N.S.) 129(171) (1986), no. 1, 140–153 (Russian); English transl., Math. USSR-Sb. 57 (1987), no. 1, 151–164. MR 830100, DOI 10.1070/SM1987v057n01ABEH003060
- A. A. Premet, Absolute zero divisors in Lie algebras over a perfect field, Dokl. Akad. Nauk BSSR 31 (1987), no. 10, 869–872, 956 (Russian, with English summary). MR 920913
- Alexander Premet, Nilpotent commuting varieties of reductive Lie algebras, Invent. Math. 154 (2003), no. 3, 653–683. MR 2018787, DOI 10.1007/s00222-003-0315-6
- Daniel Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2) 94 (1971), 549–572; ibid. (2) 94 (1971), 573–602. MR 298694, DOI 10.2307/1970770
- Khalid Rian, Extensions of the Witt algebra and applications, J. Algebra Appl. 10 (2011), no. 6, 1233–1259. MR 2864573, DOI 10.1142/S0219498811005154
- G. Seligman, The complete reducibility of certain modules, Mimeographed, Yale University, 1961.
- G. B. Seligman, Modular Lie algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 40, Springer-Verlag New York, Inc., New York, 1967. MR 0245627, DOI 10.1007/978-3-642-94985-2
- Daniel Simson, On representation types of module subcategories and orders, Bull. Polish Acad. Sci. Math. 41 (1993), no. 2, 77–93 (1994). MR 1414754
- Serge Skryabin, Tori in the Melikian algebra, J. Algebra 243 (2001), no. 1, 69–95. MR 1851654, DOI 10.1006/jabr.2001.8849
- T. A. Springer, Linear algebraic groups, Progress in Mathematics, vol. 9, Birkhäuser, Boston, Mass., 1981. MR 632835
- Robert Steinberg, Torsion in reductive groups, Advances in Math. 15 (1975), 63–92. MR 354892, DOI 10.1016/0001-8708(75)90125-5
- Helmut Strade, Simple Lie algebras over fields of positive characteristic. I, De Gruyter Expositions in Mathematics, vol. 38, Walter de Gruyter & Co., Berlin, 2004. Structure theory. MR 2059133, DOI 10.1515/9783110197945
- Helmut Strade and Rolf Farnsteiner, Modular Lie algebras and their representations, Monographs and Textbooks in Pure and Applied Mathematics, vol. 116, Marcel Dekker, Inc., New York, 1988. MR 929682
- Andrei Suslin, Eric M. Friedlander, and Christopher P. Bendel, Infinitesimal $1$-parameter subgroups and cohomology, J. Amer. Math. Soc. 10 (1997), no. 3, 693–728. MR 1443546, DOI 10.1090/S0894-0347-97-00240-3
- Andrei Suslin, Eric M. Friedlander, and Christopher P. Bendel, Support varieties for infinitesimal group schemes, J. Amer. Math. Soc. 10 (1997), no. 3, 729–759. MR 1443547, DOI 10.1090/S0894-0347-97-00239-7
- Jared Warner, Rational points and orbits on the variety of elementary subalgebras, J. Pure Appl. Algebra 219 (2015), no. 8, 3355–3371. MR 3320224, DOI 10.1016/j.jpaa.2014.10.019
Bibliographic Information
- Hao Chang
- Affiliation: School of Mathematics and Statistics, Central China Normal University, 430079 Wuhan, People’s Republic of China
- ORCID: 0000-0002-0137-0586
- Email: chang@mail.ccnu.edu.cn
- Rolf Farnsteiner
- Affiliation: Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, 24098 Kiel, Germany
- MR Author ID: 194225
- Email: rolf@math.uni-kiel.de
- Received by editor(s): April 22, 2020
- Received by editor(s) in revised form: December 5, 2020
- Published electronically: February 11, 2021
- Additional Notes: The first author was partially supported by the National Natural Science Foundation of China (No. 11801204).
- © Copyright 2021 American Mathematical Society
- Journal: Represent. Theory 25 (2021), 90-141
- MSC (2020): Primary 17B50, 16G10
- DOI: https://doi.org/10.1090/ert/559
- MathSciNet review: 4214336
Dedicated: Dedicated to Jens Carsten Jantzen on the occasion of his 70th birthday