## Reducing mod $p$ complex representations of finite reductive groups

HTML articles powered by AMS MathViewer

- by G. Lusztig
- Represent. Theory
**25**(2021), 166-172 - DOI: https://doi.org/10.1090/ert/562
- Published electronically: March 2, 2021
- PDF | Request permission

## Abstract:

We state a conjecture on the reduction modulo the defining characteristic of a unipotent representation of a finite reductive group.## References

- R. Brauer and C. Nesbitt,
*On the modular characters of groups*, Ann. of Math. (2)**42**(1941), 556β590. MR**4042**, DOI 10.2307/1968918 - R. W. Carter and G. Lusztig,
*Modular representations of finite groups of Lie type*, Proc. London Math. Soc. (3)**32**(1976), no.Β 2, 347β384. MR**396731**, DOI 10.1112/plms/s3-32.2.347 - P. Deligne and G. Lusztig,
*Representations of reductive groups over finite fields*, Ann. of Math. (2)**103**(1976), no.Β 1, 103β161. MR**393266**, DOI 10.2307/1971021 - James E. Humphreys,
*Ordinary and modular representations of Chevalley groups*, Lecture Notes in Mathematics, Vol. 528, Springer-Verlag, Berlin-New York, 1976. MR**0453884**, DOI 10.1007/BFb0079105 - J. E. Humphreys,
*Ordinary and modular characters of $\textrm {SL}(3,\,p)$*, J. Algebra**72**(1981), no.Β 1, 8β16. MR**634614**, DOI 10.1016/0021-8693(81)90309-4 - Jens Carsten Jantzen,
*Zur Reduktion modulo $p$ der Charaktere von Deligne und Lusztig*, J. Algebra**70**(1981), no.Β 2, 452β474 (German). MR**623819**, DOI 10.1016/0021-8693(81)90229-5 - Jens Carsten Jantzen,
*Zur Reduktion modulo $p$ unipotenter Charaktere endlicher Chevalley-Gruppen*, Math. Z.**181**(1982), no.Β 1, 97β128 (German). MR**671718**, DOI 10.1007/BF01214985 - J. C. Jantzen,
*Representations of Chevalley groups in their own characteristic*, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp.Β 127β146. MR**933356**, DOI 10.1090/pspum/047.1/933356 - G. Lusztig,
*On the discrete representations of the general linear groups over a finite field*, Bull. Amer. Math. Soc.**79**(1973), 550β554. MR**315010**, DOI 10.1090/S0002-9904-1973-13198-2 - George Lusztig,
*Unipotent characters of the symplectic and odd orthogonal groups over a finite field*, Invent. Math.**64**(1981), no.Β 2, 263β296. MR**629472**, DOI 10.1007/BF01389170 - George Lusztig,
*Characters of reductive groups over a finite field*, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR**742472**, DOI 10.1515/9781400881772 - G. Lusztig,
*Leading coefficients of character values of Hecke algebras*, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp.Β 235β262. MR**933415**, DOI 10.1090/pspum/047.2/933415 - G. Lusztig,
*Conjugacy classes in reductive groups and two-sided cells*, Bull. Inst. Math. Acad. Sin. (N.S.)**14**(2019), no.Β 3, 265β293. MR**4033057**, DOI 10.21915/bimas.2019301 - D. Mertens,
*Zur Darstellungstheorie der endlicher Chevalley-Gruppen von typ $G_2$*, Diplomarbeit (1985), UniversitΓ€t Bonn.

## Bibliographic Information

**G. Lusztig**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Email: gyuri@mit.edu
- Received by editor(s): July 31, 2020
- Received by editor(s) in revised form: December 4, 2020
- Published electronically: March 2, 2021
- Additional Notes: The author was supported by NSF grant DMS-1566618.
- © Copyright 2021 American Mathematical Society
- Journal: Represent. Theory
**25**(2021), 166-172 - MSC (2020): Primary 20G99
- DOI: https://doi.org/10.1090/ert/562
- MathSciNet review: 4223042

Dedicated: Dedicated to the memory of Jim Humphreys