Reducing mod $p$ complex representations of finite reductive groups
HTML articles powered by AMS MathViewer
- by G. Lusztig
- Represent. Theory 25 (2021), 166-172
- DOI: https://doi.org/10.1090/ert/562
- Published electronically: March 2, 2021
- PDF | Request permission
Abstract:
We state a conjecture on the reduction modulo the defining characteristic of a unipotent representation of a finite reductive group.References
- R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math. (2) 42 (1941), 556β590. MR 4042, DOI 10.2307/1968918
- R. W. Carter and G. Lusztig, Modular representations of finite groups of Lie type, Proc. London Math. Soc. (3) 32 (1976), no.Β 2, 347β384. MR 396731, DOI 10.1112/plms/s3-32.2.347
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no.Β 1, 103β161. MR 393266, DOI 10.2307/1971021
- James E. Humphreys, Ordinary and modular representations of Chevalley groups, Lecture Notes in Mathematics, Vol. 528, Springer-Verlag, Berlin-New York, 1976. MR 0453884, DOI 10.1007/BFb0079105
- J. E. Humphreys, Ordinary and modular characters of $\textrm {SL}(3,\,p)$, J. Algebra 72 (1981), no.Β 1, 8β16. MR 634614, DOI 10.1016/0021-8693(81)90309-4
- Jens Carsten Jantzen, Zur Reduktion modulo $p$ der Charaktere von Deligne und Lusztig, J. Algebra 70 (1981), no.Β 2, 452β474 (German). MR 623819, DOI 10.1016/0021-8693(81)90229-5
- Jens Carsten Jantzen, Zur Reduktion modulo $p$ unipotenter Charaktere endlicher Chevalley-Gruppen, Math. Z. 181 (1982), no.Β 1, 97β128 (German). MR 671718, DOI 10.1007/BF01214985
- J. C. Jantzen, Representations of Chevalley groups in their own characteristic, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp.Β 127β146. MR 933356, DOI 10.1090/pspum/047.1/933356
- G. Lusztig, On the discrete representations of the general linear groups over a finite field, Bull. Amer. Math. Soc. 79 (1973), 550β554. MR 315010, DOI 10.1090/S0002-9904-1973-13198-2
- George Lusztig, Unipotent characters of the symplectic and odd orthogonal groups over a finite field, Invent. Math. 64 (1981), no.Β 2, 263β296. MR 629472, DOI 10.1007/BF01389170
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- G. Lusztig, Leading coefficients of character values of Hecke algebras, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp.Β 235β262. MR 933415, DOI 10.1090/pspum/047.2/933415
- G. Lusztig, Conjugacy classes in reductive groups and two-sided cells, Bull. Inst. Math. Acad. Sin. (N.S.) 14 (2019), no.Β 3, 265β293. MR 4033057, DOI 10.21915/bimas.2019301
- D. Mertens, Zur Darstellungstheorie der endlicher Chevalley-Gruppen von typ $G_2$, Diplomarbeit (1985), UniversitΓ€t Bonn.
Bibliographic Information
- G. Lusztig
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Email: gyuri@mit.edu
- Received by editor(s): July 31, 2020
- Received by editor(s) in revised form: December 4, 2020
- Published electronically: March 2, 2021
- Additional Notes: The author was supported by NSF grant DMS-1566618.
- © Copyright 2021 American Mathematical Society
- Journal: Represent. Theory 25 (2021), 166-172
- MSC (2020): Primary 20G99
- DOI: https://doi.org/10.1090/ert/562
- MathSciNet review: 4223042
Dedicated: Dedicated to the memory of Jim Humphreys