Equivalence of a tangle category and a category of infinite dimensional $\mathrm {U}_q(\mathfrak {sl}_2)$-modules
HTML articles powered by AMS MathViewer
- by K. Iohara, G. I. Lehrer and R. B. Zhang
- Represent. Theory 25 (2021), 265-299
- DOI: https://doi.org/10.1090/ert/568
- Published electronically: April 20, 2021
- PDF | Request permission
Abstract:
It is very well known that if $V$ is the simple $2$-dimensional representation of $\mathrm {U}_q(\mathfrak {sl}_2)$, the category of representations $V^{\otimes r}$, $r=0,1,2,\dots$, is equivalent to the Temperley-Lieb category $\mathrm {TL}(q)$. Such categorical equivalences between tangle categories and categories of representations are rare. In this work we give a family of new equivalences by extending the above equivalence to one between the category of representations $M\otimes V^{\otimes r}$, where $M$ is a projective Verma module of $\mathrm {U}_q(\mathfrak {sl}_2)$ and the type $B$ Temperley-Lieb category $\mathbb {TLB}(q,Q)$, realised as a subquotient of the tangle category of Freyd, Yetter, Reshetikhin, Turaev and others.References
- Daniel Allcock, Braid pictures for Artin groups, Trans. Amer. Math. Soc. 354 (2002), no. 9, 3455–3474. MR 1911508, DOI 10.1090/S0002-9947-02-02944-6
- Henning H. Andersen, Gustav I. Lehrer, and Ruibin Zhang, Cellularity of certain quantum endomorphism algebras, Pacific J. Math. 279 (2015), no. 1-2, 11–35. MR 3437768, DOI 10.2140/pjm.2015.279.11
- Tomoyuki Arakawa and Takeshi Suzuki, Duality between $\mathfrak {s}\mathfrak {l}_n(\textbf {C})$ and the degenerate affine Hecke algebra, J. Algebra 209 (1998), no. 1, 288–304. MR 1652134, DOI 10.1006/jabr.1998.7530
- Joseph Bernstein, Igor Frenkel, and Mikhail Khovanov, A categorification of the Temperley-Lieb algebra and Schur quotients of $U(\mathfrak {sl}_2)$ via projective and Zuckerman functors, Selecta Math. (N.S.) 5 (1999), no. 2, 199–241. MR 1714141, DOI 10.1007/s000290050047
- Jonathan Brundan and Catharina Stroppel, Highest weight categories arising from Khovanov’s diagram algebra III: category $\scr O$, Represent. Theory 15 (2011), 170–243. MR 2781018, DOI 10.1090/S1088-4165-2011-00389-7
- Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras and affine Hecke algebras, Pacific J. Math. 174 (1996), no. 2, 295–326. MR 1405590, DOI 10.2140/pjm.1996.174.295
- Anton Cox, John Graham, and Paul Martin, The blob algebra in positive characteristic, J. Algebra 266 (2003), no. 2, 584–635. MR 1995129, DOI 10.1016/S0021-8693(03)00260-6
- Zajj Daugherty, Arun Ram, and Rahbar Virk, Affine and degenerate affine BMW algebras: the center, Osaka J. Math. 51 (2014), no. 1, 257–283. MR 3192543
- V. G. Drinfel′d, Degenerate affine Hecke algebras and Yangians, Funktsional. Anal. i Prilozhen. 20 (1986), no. 1, 69–70 (Russian). MR 831053
- Igor Frenkel, Mikhail Khovanov, and Catharina Stroppel, A categorification of finite-dimensional irreducible representations of quantum $\mathfrak {sl}_2$ and their tensor products, Selecta Math. (N.S.) 12 (2006), no. 3-4, 379–431. MR 2305608, DOI 10.1007/s00029-007-0031-y
- Peter J. Freyd and David N. Yetter, Braided compact closed categories with applications to low-dimensional topology, Adv. Math. 77 (1989), no. 2, 156–182. MR 1020583, DOI 10.1016/0001-8708(89)90018-2
- J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), no. 1, 1–34. MR 1376244, DOI 10.1007/BF01232365
- J. J. Graham and G. I. Lehrer, The representation theory of affine Temperley-Lieb algebras, Enseign. Math. (2) 44 (1998), no. 3-4, 173–218. MR 1659204
- J. J. Graham and G. I. Lehrer, Diagram algebras, Hecke algebras and decomposition numbers at roots of unity, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 4, 479–524 (English, with English and French summaries). MR 2013924, DOI 10.1016/S0012-9593(03)00020-X
- K. Iohara, G. I. Lehrer, and R. B. Zhang, Temperley-Lieb algebras at roots of unity, a fusion category and the Jones quotient, Math. Res. Lett. 26 (2019), no. 1, 121–158. MR 3963979, DOI 10.4310/MRL.2019.v26.n1.a8
- Michio Jimbo, A $q$-analogue of $U({\mathfrak {g}}{\mathfrak {l}}(N+1))$, Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), no. 3, 247–252. MR 841713, DOI 10.1007/BF00400222
- V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335–388. MR 908150, DOI 10.2307/1971403
- G. I. Lehrer and R. B. Zhang, Strongly multiplicity free modules for Lie algebras and quantum groups, J. Algebra 306 (2006), no. 1, 138–174. MR 2271576, DOI 10.1016/j.jalgebra.2006.03.043
- G. I. Lehrer and R. B. Zhang, A Temperley-Lieb analogue for the BMW algebra, Representation theory of algebraic groups and quantum groups, Progr. Math., vol. 284, Birkhäuser/Springer, New York, 2010, pp. 155–190. MR 2761939, DOI 10.1007/978-0-8176-4697-4_{7}
- G. I. Lehrer and R. B. Zhang, The Brauer category and invariant theory, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 9, 2311–2351. MR 3420509, DOI 10.4171/JEMS/558
- Tobias Lejczyk and Catharina Stroppel, A graphical description of $(D_n,A_{n-1})$ Kazhdan-Lusztig polynomials, Glasg. Math. J. 55 (2013), no. 2, 313–340. MR 3040865, DOI 10.1017/S0017089512000547
- George Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), no. 3, 599–635. MR 991016, DOI 10.1090/S0894-0347-1989-0991016-9
- Paul Martin and Hubert Saleur, The blob algebra and the periodic Temperley-Lieb algebra, Lett. Math. Phys. 30 (1994), no. 3, 189–206. MR 1267001, DOI 10.1007/BF00805852
- N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), no. 1, 1–26. MR 1036112, DOI 10.1007/BF02096491
- N. Reshetikhin and V. G. Turaev, Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547–597. MR 1091619, DOI 10.1007/BF01239527
- J. D. Rogawski, On modules over the Hecke algebra of a $p$-adic group, Invent. Math. 79 (1985), no. 3, 443–465. MR 782228, DOI 10.1007/BF01388516
- V. G. Turaev, Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter & Co., Berlin, 1994. MR 1292673, DOI 10.1515/9783110883275
- A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210. MR 584084, DOI 10.24033/asens.1379
- R. B. Zhang, M. D. Gould, and A. J. Bracken, Quantum group invariants and link polynomials, Comm. Math. Phys. 137 (1991), no. 1, 13–27. MR 1099254, DOI 10.1007/BF02099115
Bibliographic Information
- K. Iohara
- Affiliation: Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
- MR Author ID: 334495
- ORCID: 0000-0001-6748-8256
- Email: iohara@math.univ-lyon1.fr
- G. I. Lehrer
- Affiliation: School of Mathematics and Statistics, University of Sydney, N.S.W. 2006, Australia
- MR Author ID: 112045
- ORCID: 0000-0002-7918-7650
- Email: gustav.lehrer@sydney.edu.au
- R. B. Zhang
- Affiliation: School of Mathematics and Statistics, University of Sydney, N.S.W. 2006, Australia
- Email: ruibin.zhang@sydney.edu.au
- Received by editor(s): November 20, 2019
- Received by editor(s) in revised form: November 25, 2020
- Published electronically: April 20, 2021
- Additional Notes: Partially supported by the Australian Research Council.
- © Copyright 2021 American Mathematical Society
- Journal: Represent. Theory 25 (2021), 265-299
- MSC (2020): Primary 17B37, 20G42; Secondary 81R50
- DOI: https://doi.org/10.1090/ert/568
- MathSciNet review: 4245314