## On induction of class functions

HTML articles powered by AMS MathViewer

- by G. Lusztig
- Represent. Theory
**25**(2021), 412-421 - DOI: https://doi.org/10.1090/ert/561
- Published electronically: May 7, 2021
- PDF | Request permission

## Abstract:

Let $G$ be a connected reductive group defined over a finite field $\mathbf {F}_q$ and let $L$ be a Levi subgroup (defined over $\mathbf {F}_q$) of a parabolic subgroup $P$ of $G$. We define a linear map from class functions on $L(\mathbf {F}_q)$ to class functions on $G(\mathbf {F}_q)$. This map is independent of the choice of $P$. We show that for large $q$ this map coincides with the known cohomological induction (whose definition involves a choice of $P$).## References

- Cédric Bonnafé and Jean Michel,
*Computational proof of the Mackey formula for $q>2$*, J. Algebra**327**(2011), 506–526. MR**2746047**, DOI 10.1016/j.jalgebra.2010.10.030 - P. Deligne and G. Lusztig,
*Representations of reductive groups over finite fields*, Ann. of Math. (2)**103**(1976), no. 1, 103–161. MR**393266**, DOI 10.2307/1971021 - François Digne and Jean Michel,
*Representations of finite groups of Lie type*, London Mathematical Society Student Texts, vol. 95, Cambridge University Press, Cambridge, 2020. Second edition of [ 1118841]. MR**4211777**, DOI 10.1017/9781108673655 - Meinolf Geck and Gunter Malle,
*The character theory of finite groups of Lie type*, Cambridge Studies in Advanced Mathematics, vol. 187, Cambridge University Press, Cambridge, 2020. A guided tour. MR**4211779**, DOI 10.1017/9781108779081 - G. Lusztig,
*On the finiteness of the number of unipotent classes*, Invent. Math.**34**(1976), no. 3, 201–213. MR**419635**, DOI 10.1007/BF01403067 - George Lusztig,
*Representations of finite Chevalley groups*, CBMS Regional Conference Series in Mathematics, vol. 39, American Mathematical Society, Providence, R.I., 1978. Expository lectures from the CBMS Regional Conference held at Madison, Wis., August 8–12, 1977. MR**518617**, DOI 10.1090/cbms/039 - G. Lusztig,
*Intersection cohomology complexes on a reductive group*, Invent. Math.**75**(1984), no. 2, 205–272. MR**732546**, DOI 10.1007/BF01388564 - George Lusztig,
*Character sheaves. II, III*, Adv. in Math.**57**(1985), no. 3, 226–265, 266–315. MR**806210**, DOI 10.1016/0001-8708(85)90064-7 - George Lusztig,
*Character sheaves. V*, Adv. in Math.**61**(1986), no. 2, 103–155. MR**849848**, DOI 10.1016/0001-8708(86)90071-X - George Lusztig,
*Green functions and character sheaves*, Ann. of Math. (2)**131**(1990), no. 2, 355–408. MR**1043271**, DOI 10.2307/1971496 - G. Lusztig,
*Character sheaves on disconnected groups. V*, Represent. Theory**8**(2004), 346–376. MR**2077486**, DOI 10.1090/S1088-4165-04-00251-1 - G. Lusztig,
*On the cleanness of cuspidal character sheaves*, Mosc. Math. J.**12**(2012), no. 3, 621–631, 669 (English, with English and Russian summaries). MR**3024826**, DOI 10.17323/1609-4514-2012-12-3-621-631 - Toshiaki Shoji,
*Character sheaves and almost characters of reductive groups. I, II*, Adv. Math.**111**(1995), no. 2, 244–313, 314–354. MR**1318530**, DOI 10.1006/aima.1995.1024

## Bibliographic Information

**G. Lusztig**- Affiliation: Department of Mathematics, M.I.T., Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Email: gyuri@mit.edu
- Received by editor(s): July 31, 2020
- Received by editor(s) in revised form: November 27, 2020, and December 4, 2020
- Published electronically: May 7, 2021
- Additional Notes: This research was supported by NSF grant DMS-1855773
- © Copyright 2021 American Mathematical Society
- Journal: Represent. Theory
**25**(2021), 412-421 - MSC (2020): Primary 20G99
- DOI: https://doi.org/10.1090/ert/561
- MathSciNet review: 4263412