Equivalence of categories between coefficient systems and systems of idempotents
HTML articles powered by AMS MathViewer
- by Thomas Lanard
- Represent. Theory 25 (2021), 422-439
- DOI: https://doi.org/10.1090/ert/572
- Published electronically: June 2, 2021
- PDF | Request permission
Abstract:
The consistent systems of idempotents of Meyer and Solleveld allow to construct Serre subcategories of $\operatorname {Rep}_R(G)$, the category of smooth representations of a $p$-adic group $G$ with coefficients in $R$. In particular, they were used to construct level 0 decompositions when $R=\overline {\mathbb {Z}}_{\ell }$, $\ell \neq p$, by Dat for $GL_{n}$ and the author for a more general group. Wang proved in the case of $GL_{n}$ that the subcategory associated with a system of idempotents is equivalent to a category of coefficient systems on the Bruhat-Tits building. This result was used by Dat to prove an equivalence between an arbitrary level zero block of $GL_{n}$ and a unipotent block of another group. In this paper, we generalize Wang’s equivalence of category to a connected reductive group on a non-archimedean local field.References
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251 (French). MR 327923, DOI 10.1007/BF02715544
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376 (French). MR 756316
- Jean-François Dat, Equivalences of tame blocks for $p$-adic linear groups, Math. Ann. 371 (2018), no. 1-2, 565–613. MR 3788858, DOI 10.1007/s00208-018-1648-1
- Thomas Lanard, Sur les $\ell$-blocs de niveau zéro des groupes $p$-adiques, Compos. Math. 154 (2018), no. 7, 1473–1507 (French, with English summary). MR 3826462, DOI 10.1112/s0010437x18007133
- Thomas Lanard, Sur les $\ell$-blocs de niveau zéro des groupes $p$-adiques II, arXiv e-prints (2018), arXiv:1806.09543.
- Ralf Meyer and Maarten Solleveld, Resolutions for representations of reductive $p$-adic groups via their buildings, J. Reine Angew. Math. 647 (2010), 115–150. MR 2729360, DOI 10.1515/CRELLE.2010.075
- Peter Schneider and Ulrich Stuhler, Representation theory and sheaves on the Bruhat-Tits building, Inst. Hautes Études Sci. Publ. Math. 85 (1997), 97–191. MR 1471867, DOI 10.1007/BF02699536
- Marie-France Vignéras, Représentations $l$-modulaires d’un groupe réductif $p$-adique avec $l\ne p$, Progress in Mathematics, vol. 137, Birkhäuser Boston, Inc., Boston, MA, 1996 (French, with English summary). MR 1395151
- Marie-France Vignéras, Cohomology of sheaves on the building and $R$-representations, Invent. Math. 127 (1997), no. 2, 349–373. MR 1427623, DOI 10.1007/s002220050124
- Haoran Wang, L’espace symétrique de Drinfeld et correspondance de Langlands locale II, Math. Ann. 369 (2017), no. 3-4, 1081–1130 (French, with English summary). MR 3713536, DOI 10.1007/s00208-016-1489-8
Bibliographic Information
- Thomas Lanard
- Affiliation: Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
- MR Author ID: 1288084
- Email: thomas.lanard@univie.ac.at
- Received by editor(s): August 4, 2020
- Received by editor(s) in revised form: January 14, 2021, and February 8, 2021
- Published electronically: June 2, 2021
- © Copyright 2021 American Mathematical Society
- Journal: Represent. Theory 25 (2021), 422-439
- MSC (2020): Primary 22E50; Secondary 20E42
- DOI: https://doi.org/10.1090/ert/572
- MathSciNet review: 4273167