Gradings of Lie algebras, magical spin geometries and matrix factorizations
HTML articles powered by AMS MathViewer
- by Roland Abuaf and Laurent Manivel
- Represent. Theory 25 (2021), 527-542
- DOI: https://doi.org/10.1090/ert/573
- Published electronically: June 22, 2021
- PDF | Request permission
Abstract:
We describe a remarkable rank $14$ matrix factorization of the octic $\mathrm {Spin}_{14}$-invariant polynomial on either of its half-spin representations. We observe that this representation can be, in a suitable sense, identified with a tensor product of two octonion algebras. Moreover the matrix factorisation can be deduced from a particular $\mathbb {Z}$-grading of $\mathfrak {e}_8$. Intriguingly, the whole story can in fact be extended to the whole Freudenthal-Tits magic square and yields matrix factorizations on other spin representations, as well as for the degree seven invariant on the space of three-forms in several variables. As an application of our results on $\mathrm {Spin}_{14}$, we construct a special rank seven vector bundle on a double-octic threefold, that we conjecture to be spherical.References
- Roland Abuaf, On quartic double fivefolds and the matrix factorizations of exceptional quaternionic representations, Ann. Inst. Fourier (Grenoble) 70 (2020), no. 4, 1403–1430 (English, with English and French summaries). MR 4245576, DOI 10.5802/aif.3396
- Ilka Agricola, Old and new on the exceptional group $G_2$, Notices Amer. Math. Soc. 55 (2008), no. 8, 922–929. MR 2441524
- B. N. Allison, Models of isotropic simple Lie algebras, Comm. Algebra 7 (1979), no. 17, 1835–1875. MR 547712, DOI 10.1080/00927877908822432
- B. N. Allison and J. R. Faulkner, Norms on structurable algebras, Comm. Algebra 20 (1992), no. 1, 155–188. MR 1145331, DOI 10.1080/00927879208824337
- John C. Baez, The octonions, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 2, 145–205. MR 1886087, DOI 10.1090/S0273-0979-01-00934-X
- Arnaud Beauville, Determinantal hypersurfaces, Michigan Math. J. 48 (2000), 39–64. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786479, DOI 10.1307/mmj/1030132707
- José Bertin, Clifford algebras and matrix factorizations, Adv. Appl. Clifford Algebr. 18 (2008), no. 3-4, 417–430. MR 2490565, DOI 10.1007/s00006-008-0079-6
- Ragnar-Olaf Buchweitz, David Eisenbud, and Jürgen Herzog, Cohen-Macaulay modules on quadrics, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985) Lecture Notes in Math., vol. 1273, Springer, Berlin, 1987, pp. 58–116. MR 915169, DOI 10.1007/BFb0078838
- P. Candelas, E. Derrick, and L. Parkes, Generalized Calabi-Yau manifolds and the mirror of a rigid manifold, Nuclear Phys. B 407 (1993), no. 1, 115–154. MR 1242064, DOI 10.1016/0550-3213(93)90276-U
- Claude Chevalley, The algebraic theory of spinors and Clifford algebras, Springer-Verlag, Berlin, 1997. Collected works. Vol. 2; Edited and with a foreword by Pierre Cartier and Catherine Chevalley; With a postface by J.-P. Bourguignon. MR 1636473
- Jean-Louis Clerc, Special prehomogeneous vector spaces associated to $F_4,\ E_6,\ E_7,\ E_8$ and simple Jordan algebras of rank 3, J. Algebra 264 (2003), no. 1, 98–128. MR 1980688, DOI 10.1016/S0021-8693(03)00115-7
- Pierre Deligne and Benedict H. Gross, On the exceptional series, and its descendants, C. R. Math. Acad. Sci. Paris 335 (2002), no. 11, 877–881 (English, with English and French summaries). MR 1952563, DOI 10.1016/S1631-073X(02)02590-6
- David Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35–64. MR 570778, DOI 10.1090/S0002-9947-1980-0570778-7
- Skip Garibaldi, Cohomological invariants: exceptional groups and spin groups, Mem. Amer. Math. Soc. 200 (2009), no. 937, xii+81. With an appendix by Detlev W. Hoffmann. MR 2528487, DOI 10.1090/memo/0937
- Laurent Gruson, Steven V. Sam, and Jerzy Weyman, Moduli of abelian varieties, Vinberg $\theta$-groups, and free resolutions, Commutative algebra, Springer, New York, 2013, pp. 419–469. MR 3051381, DOI 10.1007/978-1-4614-5292-8_{1}3
- Akihiko Gyoja, Construction of invariants, Tsukuba J. Math. 14 (1990), no. 2, 437–457. MR 1085211, DOI 10.21099/tkbjm/1496161465
- V. G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), no. 1, 190–213. MR 575790, DOI 10.1016/0021-8693(80)90141-6
- Jun-ichi Igusa, A classification of spinors up to dimension twelve, Amer. J. Math. 92 (1970), 997–1028. MR 277558, DOI 10.2307/2373406
- Atanas Iliev and Laurent Manivel, Fano manifolds of Calabi-Yau Hodge type, J. Pure Appl. Algebra 219 (2015), no. 6, 2225–2244. MR 3299729, DOI 10.1016/j.jpaa.2014.07.033
- V. Gatti and E. Viniberghi, Spinors of $13$-dimensional space, Adv. in Math. 30 (1978), no. 2, 137–155. MR 513846, DOI 10.1016/0001-8708(78)90034-8
- Nigel Hitchin, $SL(2)$ over the octonions, Math. Proc. R. Ir. Acad. 118A (2018), no. 1, 21–38. MR 3811489, DOI 10.3318/pria.2018.118.04
- Tatsuo Kimura, Remark on some combinatorial construction of relative invariants, Tsukuba J. Math. 5 (1981), no. 1, 101–115. MR 630524, DOI 10.21099/tkbjm/1496159322
- Tatsuo Kimura, Introduction to prehomogeneous vector spaces, Translations of Mathematical Monographs, vol. 215, American Mathematical Society, Providence, RI, 2003. Translated from the 1998 Japanese original by Makoto Nagura and Tsuyoshi Niitani and revised by the author. MR 1944442, DOI 10.1090/mmono/215
- M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1–155. MR 430336, DOI 10.1017/S0027763000017633
- W. Kraskiewicz, J. Weyman, Geometry of orbit closures for the representations associated to gradings of Lie algebras of type $E_7$, arXiv:1301.0720.
- W. Kraskiewicz, J. Weyman , Geometry of orbit closures for the representations associated to gradings of Lie algebras of type $E_8$, preprint.
- J. M. Landsberg and L. Manivel, The projective geometry of Freudenthal’s magic square, J. Algebra 239 (2001), no. 2, 477–512. MR 1832903, DOI 10.1006/jabr.2000.8697
- LiE, A computer algebra package for Lie group computations, available online at http://wwwmathlabo.univ-poitiers.fr/~maavl/LiE/
- Laurent Manivel, The Cayley Grassmannian, J. Algebra 503 (2018), 277–298. MR 3779996, DOI 10.1016/j.jalgebra.2018.02.010
- Laurent Manivel, Double spinor Calabi-Yau varieties, Épijournal Géom. Algébrique 3 (2019), Art. 2, 14 (English, with English and French summaries). MR 3936623, DOI 10.46298/epiga.2019.volume3.3965
- Laurent Manivel, Ulrich and aCM bundles from invariant theory, Comm. Algebra 47 (2019), no. 2, 706–718. MR 3935376, DOI 10.1080/00927872.2018.1495222
- V. L. Popov, Classification of the spinors of dimension fourteen, Uspehi Mat. Nauk 32 (1977), no. 1(193), 199–200 (Russian). MR 0437459
- Boris Rosenfeld, Geometry of Lie groups, Mathematics and its Applications, vol. 393, Kluwer Academic Publishers Group, Dordrecht, 1997. MR 1443207, DOI 10.1007/978-1-4757-5325-7
- Rolf Schimmrigk, Mirror symmetry and string vacua from a special class of Fano varieties, Internat. J. Modern Phys. A 11 (1996), no. 17, 3049–3096. MR 1394772, DOI 10.1142/S0217751X96001486
- Paul Seidel and Richard Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001), no. 1, 37–108. MR 1831820, DOI 10.1215/S0012-7094-01-10812-0
- È. B. Vinberg, Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra, Trudy Sem. Vektor. Tenzor. Anal. 19 (1979), 155–177 (Russian). MR 549013
Bibliographic Information
- Roland Abuaf
- Affiliation: Paris, France
- MR Author ID: 962796
- Email: rabuaf@gmail.com
- Laurent Manivel
- Affiliation: Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, UPS, F-31062 Toulouse Cedex 9, France
- MR Author ID: 291751
- ORCID: 0000-0001-6235-454X
- Email: manivel@math.cnrs.fr
- Received by editor(s): April 17, 2020
- Received by editor(s) in revised form: April 2, 2021
- Published electronically: June 22, 2021
- © Copyright 2021 American Mathematical Society
- Journal: Represent. Theory 25 (2021), 527-542
- MSC (2020): Primary 15A66, 13A50, 17B45
- DOI: https://doi.org/10.1090/ert/573
- MathSciNet review: 4276499