Irreducible tensor products of representations of covering groups of symmetric and alternating groups
Author:
Lucia Morotti
Journal:
Represent. Theory 25 (2021), 543-593
MSC (2020):
Primary 20C30, 20C20, 20C25
DOI:
https://doi.org/10.1090/ert/576
Published electronically:
June 25, 2021
MathSciNet review:
4278179
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we completely classify irreducible tensor products of covering groups of symmetric and alternating groups in characteristic $\not =2$.
- M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984), no.Β 3, 469β514. MR 746539, DOI 10.1007/BF01388470
- M. Aschbacher and L. Scott, Maximal subgroups of finite groups, J. Algebra 92 (1985), no.Β 1, 44β80. MR 772471, DOI 10.1016/0021-8693(85)90145-0
- A. A. Baranov, A. S. Kleshchev, and A. E. Zalesskii, Asymptotic results on modular representations of symmetric groups and almost simple modular group algebras, J. Algebra 219 (1999), no.Β 2, 506β530. MR 1706817, DOI 10.1006/jabr.1999.7923
- Christine Bessenrodt, On mixed products of complex characters of the double covers of the symmetric groups, Pacific J. Math. 199 (2001), no.Β 2, 257β268. MR 1847134, DOI 10.2140/pjm.2001.199.257
- C. Bessenrodt and A. Kleshchev, On Kronecker products of complex representations of the symmetric and alternating groups, Pacific J. Math. 190 (1999), no.Β 2, 201β223. MR 1722888, DOI 10.2140/pjm.1999.190.201
- Christine Bessenrodt and Alexander S. Kleshchev, On tensor products of modular representations of symmetric groups, Bull. London Math. Soc. 32 (2000), no.Β 3, 292β296. MR 1750169, DOI 10.1112/S0024609300007098
- Christine Bessenrodt and Alexander S. Kleshchev, Irreducible tensor products over alternating groups, J. Algebra 228 (2000), no.Β 2, 536β550. MR 1764578, DOI 10.1006/jabr.2000.8284
- Christine Bessenrodt and Alexander S. Kleshchev, On Kronecker products of spin characters of the double covers of the symmetric groups, Pacific J. Math. 198 (2001), no.Β 2, 295β305. MR 1835510, DOI 10.2140/pjm.2001.198.295
- C. Bessenrodt and J. B. Olsson, On residue symbols and the Mullineux conjecture, J. Algebraic Combin. 7 (1998), no.Β 3, 227β251. MR 1616083, DOI 10.1023/A:1008618621557
- Jonathan Brundan and Alexander Kleshchev, On translation functors for general linear and symmetric groups, Proc. London Math. Soc. (3) 80 (2000), no.Β 1, 75β106. MR 1719176, DOI 10.1112/S0024611500012132
- Jonathan Brundan and Alexander S. Kleshchev, Representations of the symmetric group which are irreducible over subgroups, J. Reine Angew. Math. 530 (2001), 145β190. MR 1807270, DOI 10.1515/crll.2001.002
- Jonathan Brundan and Alexander Kleshchev, Hecke-Clifford superalgebras, crystals of type $A_{2l}^{(2)}$ and modular branching rules for $\hat S_n$, Represent. Theory 5 (2001), 317β403. MR 1870595, DOI 10.1090/S1088-4165-01-00123-6
- Jonathan Brundan and Alexander Kleshchev, Projective representations of symmetric groups via Sergeev duality, Math. Z. 239 (2002), no.Β 1, 27β68. MR 1879328, DOI 10.1007/s002090100282
- Jonathan Brundan and Alexander Kleshchev, Modular representations of the supergroup $Q(n)$. I, J. Algebra 260 (2003), no.Β 1, 64β98. Special issue celebrating the 80th birthday of Robert Steinberg. MR 1973576, DOI 10.1016/S0021-8693(02)00620-8
- Jonathan Brundan and Alexander Kleshchev, Jamesβ regularization theorem for double covers of symmetric groups, J. Algebra 306 (2006), no.Β 1, 128β137. MR 2271575, DOI 10.1016/j.jalgebra.2006.01.055
- Ben Ford, Irreducible representations of the alternating group in odd characteristic, Proc. Amer. Math. Soc. 125 (1997), no.Β 2, 375β380. MR 1353385, DOI 10.1090/S0002-9939-97-03621-6
- Ben Ford and Alexander S. Kleshchev, A proof of the Mullineux conjecture, Math. Z. 226 (1997), no.Β 2, 267β308. MR 1477629, DOI 10.1007/PL00004340
- The GAP Group, GAP groups, algorithms, and programming, http://www.gap-system.org.
- Roderick Gow and Alexander Kleshchev, Connections between the representations of the symmetric group and the symplectic group in characteristic $2$, J. Algebra 221 (1999), no.Β 1, 60β89. MR 1722904, DOI 10.1006/jabr.1999.7943
- John Graham and Gordon James, On a conjecture of Gow and Kleshchev concerning tensor products, J. Algebra 227 (2000), no.Β 2, 767β782. MR 1759843, DOI 10.1006/jabr.1999.8247
- G. D. James, On the decomposition matrices of the symmetric groups. II, J. Algebra 43 (1976), no.Β 1, 45β54. MR 430050, DOI 10.1016/0021-8693(76)90143-5
- G. D. James, The representation theory of the symmetric groups, Lecture Notes in Mathematics, vol. 682, Springer, New York/Heidelberg/Berlin, 1978.
- Gordon James, The representation theory of the symmetric groups, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp.Β 111β126. MR 933355
- Gordon James and Adalbert Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR 644144
- Christoph Jansen, Klaus Lux, Richard Parker, and Robert Wilson, An atlas of Brauer characters, London Mathematical Society Monographs. New Series, vol. 11, The Clarendon Press, Oxford University Press, New York, 1995. Appendix 2 by T. Breuer and S. Norton; Oxford Science Publications. MR 1367961
- Jens C. Jantzen and Gary M. Seitz, On the representation theory of the symmetric groups, Proc. London Math. Soc. (3) 65 (1992), no.Β 3, 475β504. MR 1182100, DOI 10.1112/plms/s3-65.3.475
- Alexander S. Kleshchev, On restrictions of irreducible modular representations of semisimple algebraic groups and symmetric groups to some natural subgroups. I, Proc. London Math. Soc. (3) 69 (1994), no.Β 3, 515β540. MR 1289862, DOI 10.1112/plms/s3-69.3.515
- A. S. Kleshchev, Branching rules for modular representations of symmetric groups. III. Some corollaries and a problem of Mullineux, J. London Math. Soc. (2) 54 (1996), no.Β 1, 25β38. MR 1395065, DOI 10.1112/jlms/54.1.25
- Alexander Kleshchev, On decomposition numbers and branching coefficients for symmetric and special linear groups, Proc. London Math. Soc. (3) 75 (1997), no.Β 3, 497β558. MR 1466660, DOI 10.1112/S0024611597000427
- Alexander Kleshchev, Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, vol. 163, Cambridge University Press, Cambridge, 2005. MR 2165457, DOI 10.1017/CBO9780511542800
- Alexander Kleshchev, Lucia Morotti, and Pham Huu Tiep, Irreducible restrictions of representations of symmetric groups in small characteristics: reduction theorems, Math. Z. 293 (2019), no.Β 1-2, 677β723. MR 4002296, DOI 10.1007/s00209-018-2203-1
- Alexander Kleshchev and Vladimir Shchigolev, Modular branching rules for projective representations of symmetric groups and lowering operators for the supergroup $Q(n)$, Mem. Amer. Math. Soc. 220 (2012), no.Β 1034, xviii+123. MR 3014600, DOI 10.1090/S0065-9266-2012-00657-5
- Alexander S. Kleshchev and Jagat Sheth, Representations of the alternating group which are irreducible over subgroups, Proc. London Math. Soc. (3) 84 (2002), no.Β 1, 194β212. MR 1863400, DOI 10.1112/S002461150101320X
- Alexander S. Kleshchev and Pham Huu Tiep, On restrictions of modular spin representations of symmetric and alternating groups, Trans. Amer. Math. Soc. 356 (2004), no.Β 5, 1971β1999. MR 2031049, DOI 10.1090/S0002-9947-03-03364-6
- Stuart Martin, Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol. 112, Cambridge University Press, Cambridge, 1993. MR 1268640, DOI 10.1017/CBO9780511470899
- Lucia Morotti, Irreducible tensor products for symmetric groups in characteristic 2, Proc. Lond. Math. Soc. (3) 116 (2018), no.Β 6, 1553β1598. MR 3816389, DOI 10.1112/plms.12127
- Lucia Morotti, Irreducible tensor products for alternating groups in characteristic 5, Algebr. Represent. Theory 24 (2021), no.Β 1, 203β229. MR 4207396, DOI 10.1007/s10468-019-09941-0
- Lucia Morotti, Irreducible tensor products for alternating groups in characteristics 2 and 3, J. Pure Appl. Algebra 224 (2020), no.Β 12, 106426, 32. MR 4099917, DOI 10.1016/j.jpaa.2020.106426
- Lucia Morotti, Composition factors of 2-parts spin representations of symmetric groups, Algebr. Comb. 3 (2020), no.Β 6, 1283β1291. MR 4184046, DOI 10.5802/alco
- A. O. Morris, The spin representation of the symmetric group, Proc. London Math. Soc. (3) 12 (1962), 55β76. MR 136668, DOI 10.1112/plms/s3-12.1.55
- G. Mullineux, Bijections of $p$-regular partitions and $p$-modular irreducibles of the symmetric groups, J. London Math. Soc. (2) 20 (1979), no.Β 1, 60β66. MR 545202, DOI 10.1112/jlms/s2-20.1.60
- M. H. Peel, Hook representations of the symmetric groups, Glasgow Math. J. 12 (1971), 136β149. MR 308249, DOI 10.1017/S0017089500001245
- Aaron M. Phillips, Restricting modular spin representations of symmetric and alternating groups to Young-type subgroups, Proc. London Math. Soc. (3) 89 (2004), no.Β 3, 623β654. MR 2107009, DOI 10.1112/S0024611504014893
- John R. Stembridge, Shifted tableaux and the projective representations of symmetric groups, Adv. Math. 74 (1989), no.Β 1, 87β134. MR 991411, DOI 10.1016/0001-8708(89)90005-4
- David B. Wales, Some projective representations of $S_{n}$, J. Algebra 61 (1979), no.Β 1, 37β57. MR 554850, DOI 10.1016/0021-8693(79)90304-1
- Ilan Zisser, Irreducible products of characters in $A_n$, Israel J. Math. 84 (1993), no.Β 1-2, 147β151. MR 1244664, DOI 10.1007/BF02761696
Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2020): 20C30, 20C20, 20C25
Retrieve articles in all journals with MSC (2020): 20C30, 20C20, 20C25
Additional Information
Lucia Morotti
Affiliation:
Institut fΓΌr Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz UniversitΓ€t Hannover, 30167 Hannover, Germany
MR Author ID:
1037296
Email:
morotti@math.uni-hannover.de
Received by editor(s):
October 6, 2020
Received by editor(s) in revised form:
March 26, 2021
Published electronically:
June 25, 2021
Additional Notes:
The author was supported by the DFG grant MO 3377/1-1. This work was supported by: EPSRC grant number EP/R014604/1
Article copyright:
© Copyright 2021
American Mathematical Society